Abstract Transitioning from pluripotency to differentiated cell fates is fundamental to both embryonic development and adult tissue homeostasis. Improving our understanding of this transition would facilitate our ability to manipulate pluripotent cells into tissues for therapeutic use. Here, we show that membrane voltage (Vm) regulates the exit from pluripotency and the onset of germ layer differentiation in the embryo, a process that affects both gastrulation and left-right patterning. By examining candidate genes of congenital heart disease and heterotaxy, we identifyKCNH6, a member of the ether-a-go-go class of potassium channels that hyperpolarizes the Vmand thus limits the activation of voltage gated calcium channels, lowering intracellular calcium. In pluripotent embryonic cells, depletion ofkcnh6leads to membrane depolarization, elevation of intracellular calcium levels, and the maintenance of a pluripotent state at the expense of differentiation into ectodermal and myogenic lineages. Using high-resolution temporal transcriptome analysis, we identify the gene regulatory networks downstream of membrane depolarization and calcium signaling and discover that inhibition of the mTOR pathway transitions the pluripotent cell to a differentiated fate. By manipulating Vmusing a suite of tools, we establish a bioelectric pathway that regulates pluripotency in vertebrates, including human embryonic stem cells.
more »
« less
Calcium Flux in Early Shell Formation of Biomphalaria Glabrata from Trochophore to Veliger Stages
Calcium waves and oscillation during embryonic development are key elements in the intricate process of molluscan shell formation. However, understanding calcium dynamics in the early embryonic shell formation in gastropod development is still insufficient. The present study explores the role of calcium flux in early shell formation within the embryo of gastropod Biomphalaria glabrata. We hypothesized that the role of calcium is not only in providing a critical element for shell formation but also in serving as a signaling molecule for the genetic regulation of calcification. The calcium flux was visualized using the Fura-2 and Fluo-4 calcium indicators through the trochophore (72 hours) and veliger (120 hours) stages of B. glabrata development. The dynamics of calcium signals were correlated to the rapid transition from motile trochophore to veliger, marked by cilia-mediated movement and premature shell and foot development. According to our observation, the intracellular calcium signals were attenuated from 72 to 120 hours of embryo development. The expression profiles of genes encoding calmodulin and related protein kinase following the calcium flux in embryos suggested a critical role of the calcium-binding proteins in the early shell development of gastropods. Although the embryonic calcium dynamics and the related signaling pathway of shell formation are under further observation and analysis, the role of calcium in the singling pathway of shell formation has been demonstrated by this preliminary study.
more »
« less
- Award ID(s):
- 2046049
- PAR ID:
- 10528744
- Publisher / Repository:
- The Society for Integrative and Comparative Biology
- Date Published:
- Subject(s) / Keyword(s):
- Shell formation, Calcium dynamics, In vivo calcium imaging, Biomphalaria glabrata
- Format(s):
- Medium: X
- Location:
- Seattle, WA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Saxitoxin (STX) is a potent neurotoxin naturally produced by dinoflagellates and cyanobacteria. STX inhibits voltage-gated sodium channels (VGSCs), affecting the propagation of action potentials. Consumption of seafood contaminated with STX is responsible for paralytic shellfish poisoning (PSP). Humans are among the species most sensitive to PSP; neurological symptoms of exposure range from tingling of the extremities to severe paralysis. The objective of this study was to determine the effects of STX exposure on developmental processes during early embryogenesis. This study was designed to test the hypothesis that early developmental exposure to STX would disrupt key processes, particularly those related to neural development. Zebrafish embryos were exposed to STX (24 or 48 pg) or vehicle (0.3 mM HCl) at 6 hours post fertilization (hpf) via microinjection. There was no overt toxicity but starting at 36 hpf there was a temporary lack of pigmentation in STX-injected embryos, which resolved by 72 hpf. Using high performance liquid chromatography, we found that STX was retained in embryos up to 72 hpf in a dose-dependent manner. Temporal transcriptional profiling of embryos exposed to 48 pg STX per embryo revealed no differentially expressed genes (DEGs) at 24 hpf, but at 36 and 48 hpf, there were 3547 and 3356 DEGs, respectively. KEGG pathway analysis revealed significant enrichment of genes related to focal adhesion, adherens junction and regulation of actin cytoskeleton, suggesting that cell-cell and cell-extracellular matrix interactions were affected by STX. Genes affected are critical for axonal growth and the development of functional neural networks. We confirmed these findings by visualizing axonal defects in transgenic zebrafish with fluorescently labeled sensory neurons. In addition, our gene expression results suggest that STX exposure affects both canonical and noncanonical functions of VGSCs. Given the fundamental role of VGSCs in both physiology and development, these findings offer valuable insights into effects of exposure to neurotoxins.more » « less
-
Abstract Embryonic development is largely conserved among mammals. However, certain genes show divergent functions. By generating a transcriptional atlas containing >30,000 cells from post-implantation non-human primate embryos, we uncover that ISL1 , a gene with a well-established role in cardiogenesis, controls a gene regulatory network in primate amnion. CRISPR/Cas9-targeting of ISL1 results in non-human primate embryos which do not yield viable offspring, demonstrating that ISL1 is critically required in primate embryogenesis. On a cellular level, mutant ISL1 embryos display a failure in mesoderm formation due to reduced BMP4 signaling from the amnion. Via loss of function and rescue studies in human embryonic stem cells we confirm a similar role of ISL1 in human in vitro derived amnion. This study highlights the importance of the amnion as a signaling center during primate mesoderm formation and demonstrates the potential of in vitro primate model systems to dissect the genetics of early human embryonic development.more » « less
-
Embryonic development is a complex phenomenon that integrates genetic regulation and biomechanical cellular behaviors. However, the relative influence of these factors on spatiotemporal morphogen distributions is not well understood. Bone Morphogenetic Proteins (BMPs) are the primary morphogens guiding the dorsal-ventral (DV) patterning of the early zebrafish embryo, and BMP signaling is regulated by a network of extracellular and intracellular factors that impact the range and signaling of BMP ligands. Recent advances in understanding the mechanism of pattern formation support a source-sink mechanism, however, it is not clear how the source-sink mechanism shapes the morphogen patterns in three-dimensional (3D) space, nor how sensitive the pattern is to biophysical rates and boundary conditions along both the anteroposterior (AP) and DV axes of the embryo, nor how the patterns are controlled over time. Throughout blastulation and gastrulation, major cell movement, known as epiboly, happens along with the BMP-mediated DV patterning. The layer of epithelial cells begins to thin as they spread toward the vegetal pole of the embryo until it has completely engulfed the yolk cell. This dynamic domain may influence the distributions of BMP network members through advection. We developed a Finite Element Model (FEM) that incorporates all stages of zebrafish embryonic development data and solves the advection-diffusion-reaction Partial Differential Equations (PDE) in a growing domain. We use the model to investigate mechanisms in underlying BMP-driven DV patterning during epiboly. Solving the PDE is computationally expensive for parameter exploration. To overcome this obstacle, we developed a Neural Network (NN) metamodel of the 3D embryo that is accurate and fast and provided a nonlinear map between high-dimensional input and output that replaces the direct numerical simulation of the PDEs. From the modeling and acceleration by the NN metamodels, we identified the impact of advection on patterning and the influence of the dynamic expression level of regulators on the BMP signaling network.more » « less
-
An increase in anthropogenic carbon dioxide is driving oceanic chemical shifts resulting in a long-term global decrease in ocean pH, colloquially termed ocean acidification (OA). Previous studies have demonstrated that OA can have negative physiological consequences for calcifying organisms, especially during early life-history stages. However, much of the previous research has focused on static exposure to future OA conditions, rather than variable exposure to elevatedpCO2, which is more ecologically relevant for nearshore species. This study examines the effects of OA on embryonic and larval Pacific razor clams (Siliqua patula), a bivalve that produces a concretion during early shell development. Larvae were spawned and cultured over 28 days under threepCO2treatments: a static highpCO2of 867 μatm, a variable, dielpCO2of 357 to 867 μatm, and an ambientpCO2of 357 μatm. Our results indicate that the calcium carbonate polymorphism of the concretion phase ofS. patulawas amorphous calcium carbonate which transitioned to vaterite during the advanced D-veliger stage, with a final polymorphic shift to aragonite in adults, suggesting an increased vulnerability to dissolution under OA. However, exposure to elevatedpCO2appeared to accelerate the transition of larvalS. patulafrom the concretion stage of shell development to complete calcification. There was no significant impact of OA exposure to elevated or variablepCO2conditions onS. patulagrowth or HSP70 and calmodulin gene expression. This is the first experimental study examining the response of a concretion producing bivalve to future predicted OA conditions and has important implications for experimentation on larval mollusks and bivalve management.more » « less
An official website of the United States government

