skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient in vivo neural signal compression using an autoencoder-based neural network
Conventional in vivo neural signal processing involves extracting spiking activity within the recorded signals from an ensemble of neurons and transmitting only spike counts over an adequate interval. However, for brain-computer interface (BCI) applications utilizing continuous local field potentials (LFPs) for cognitive decoding, the volume of neural data to be transmitted to a computer imposes relatively high data rate requirements. This is particularly true for BCIs employing high-density intracortical recordings with hundreds or thousands of electrodes. This article introduces the first autoencoder-based compression digital circuit for the efficient transmission of LFP neural signals. Various algorithmic and architectural-level optimizations are implemented to significantly reduce the computational complexity and memory requirements of the designed in vivo compression circuit. This circuit employs an autoencoder-based neural network, providing a robust signal reconstruction. The application-specific integrated circuit (ASIC) of the in vivo compression logic occupies the smallest silicon area and consumes the lowest power among the reported state-of-the-art compression ASICs. Additionally, it offers a higher compression rate and a superior signal-to-noise and distortion ratio.  more » « less
Award ID(s):
2007131
PAR ID:
10528765
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE Transactions on Biomedical Circuits and Systems
Date Published:
Journal Name:
IEEE transactions on biomedical circuits and systems
ISSN:
1932-4545
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multi-channel data acquisition of bio-signals is a promising technology that is being used in many fields these days. Compressed sensing (CS) is an innovative approach of signal processing that facilitates sub-Nyquist processing of bio-signals, such as an electrocardiogram (ECG) and electroencephalogram (EEG). This strategy can be used to lower the data rate to realize ultra-low-power performance, As the count of recording channels increase, data volume is increased resulting in impermissible transmitting power. This paper presents the implementation of a CMOS-based front-end design with the CS in the standard 180 nm CMOS process. A novel pseudo-random sequence generator is proposed, which consists of two different types of D flip-flops that are used for obtaining a completely random sequence. The power consumed by the bio-signal amplifier block is 2.35 μW. The SAR-ADC block that is designed to digitize the amplified signal consumes 277 μW of power and the power consumption value of the pseudo-random bit sequence generator (PRBS) is 344.2μW. The sampling rate of PRBS block is 611.76 Kbps. We have considered collecting neural data from the 32 channels, and achieved an 8.5X compression rate. The low power consumption per channel confirms the importance of the proposed approach for multiple channel high-density neural interfaces. 
    more » « less
  2. Quantum circuit simulations enable researchers to develop quantum algorithms without the need for a physical quantum computer. Quantum computing simulators, however, all suffer from significant memory footprint requirements, which prevents large circuits from being simulated on classical super-computers. In this paper, we explore different lossy compression strategies to substantially shrink quantum circuit tensors in the QTensor package (a state-of-the-art tensor network quantum circuit simulator) while ensuring the reconstructed data satisfy the user-needed fidelity.Our contribution is fourfold. (1) We propose a series of optimized pre- and post-processing steps to boost the compression ratio of tensors with a very limited performance overhead. (2) We characterize the impact of lossy decompressed data on quantum circuit simulation results, and leverage the analysis to ensure the fidelity of reconstructed data. (3) We propose a configurable compression framework for GPU based on cuSZ and cuSZx, two state-of-the-art GPU-accelerated lossy compressors, to address different use-cases: either prioritizing compression ratios or prioritizing compression speed. (4) We perform a comprehensive evaluation by running 9 state-of-the-art compressors on an NVIDIA A100 GPU based on QTensor-generated tensors of varying sizes. When prioritizing compression ratio, our results show that our strategies can increase the compression ratio nearly 10 times compared to using only cuSZ. When prioritizing throughput, we can perform compression at the comparable speed as cuSZx while achieving 3-4× higher compression ratios. Decompressed tensors can be used in QTensor circuit simulation to yield a final energy result within 1-5% of the true energy value. 
    more » « less
  3. IoT devices are increasingly the source of data for machine learning (ML) applications running on edge servers. Data transmissions from devices to servers are often over local wireless networks whose bandwidth is not just limited but, more importantly, variable. Furthermore, in cyber-physical systems interacting with the physical environment, image offloading is also commonly subject to timing constraints. It is, therefore, important to develop an adaptive approach that maximizes the inference performance of ML applications under timing constraints and the resource constraints of IoT devices. In this paper, we use image classification as our target application and propose progressive neural compression (PNC) as an efficient solution to this problem. Although neural compression has been used to compress images for different ML applications, existing solutions often produce fixed-size outputs that are unsuitable for timing-constrained offloading over variable bandwidth. To address this limitation, we train a multi-objective rateless autoencoder that optimizes for multiple compression rates via stochastic taildrop to create a compression solution that produces features ordered according to their importance to inference performance. Features are then transmitted in that order based on available bandwidth, with classification ultimately performed using the (sub)set of features received by the deadline. We demonstrate the benefits of PNC over state-of-the-art neural compression approaches and traditional compression methods on a testbed comprising an IoT device and an edge server connected over a wireless network with varying bandwidth. 
    more » « less
  4. This paper demonstrates a commercial off-the-shelf components (COTS)-based miniaturized wireless optogenetic headstage with simultaneous optical stimulation and electro-physiological recording capability for freely moving rodents. The proposed headstage contains 32 recording channels. The optical stimulation system is a battery-powered neural stimulator, comprised of a low dropout regulator (LDO), an oscillator, and a µLED. The electrophysiological signal recording system includes an intracortical neural probe made of a GaN-on-silicon substrate, an array of neural amplifiers with an integrated analog-to-digital converter (ADC), a transceiver integrated circuit, and a ceramic antenna. The integrated MUX with the ADC allows sampling of the amplified voltage at a sampling rate of 4000 kSamples/s. By placing the headstage on the head of a rodent and recording the neural signals from the Ventral Tegmental area of the brain, the system is experimentally validated in in-vivo. Experimental result shows that the proposed headstage can trigger neuron activity while collecting and detecting single-cell microvolt amplitude activity from multiple channels. 
    more » « less
  5. null (Ed.)
    Deployment of 5G requires increased data trans-mission capacity in the metro fiber network. Besides deploying new dark fiber operators are also looking into solutions that improve fiber spectrum utilization by means of high-order modulation formats, flexible grid, and subcarrier multiplexing (SCM) technologies. An important factor that limits fiber spectrum utilization in metro network is the penalty inflicted on the optical signals that are routed by wavelength selective switches (WSS). In this paper, an intelligent WSS filtering penalty estimator is proposed based on neural network. With the achieved accuracy of 0.34 dB of mean absolute error in estimating the optical signal-to-noise ratio penalties caused by WSS filtering, the trained neural network is applied to estimate the fiber throughput gains that can be obtained by optimally selecting the signal symbol rate in a number of use cases. 
    more » « less