skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integral theorems for the gradient of a vector field, with a fluid dynamical application
The familiar divergence and Kelvin–Stokes theorem are generalized by a tensor-valued identity that relates the volume integral of the gradient of a vector field to the integral over the bounding surface of the tensor product of the vector field with the exterior normal. The importance of this long-established yet relatively little-known result is discussed. In flat two-dimensional space, it reduces to a relationship between an integral over an area and that over its bounding curve, combining the two-dimensional divergence and Kelvin–Stokes theorems together with two related theorems involving the strain, as is shown through a decomposition using a suitable tensor basis. A fluid dynamical application to oceanic observations along the trajectory of a moving platform is given. The potential extension of the generalized two-dimensional identity to curved surfaces is considered and is shown not to hold. Finally, the paper includes a substantial background section on tensor analysis, and presents results in both symbolic notation and index notation in order to emphasize the correspondence between these two notational systems.  more » « less
Award ID(s):
2220291 2220280 2049521
PAR ID:
10528884
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the Royal Society of London, Series A
Date Published:
Journal Name:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume:
480
Issue:
2293
ISSN:
1364-5021
Page Range / eLocation ID:
1-30
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Smooth solutions of the incompressible Euler equations are characterized by the property that circulation around material loops is conserved. This is the Kelvin theorem. Likewise, smooth solutions of Navier–Stokes are characterized by a generalized Kelvin's theorem, introduced by Constantin–Iyer (2008). In this note, we introduce a class of stochastic fluid equations, whose smooth solutions are characterized by natural extensions of the Kelvin theorems of their deterministic counterparts, which hold along certain noisy flows. These equations are called the stochastic Euler–Poincaré and stochastic Navier–Stokes–Poincaré equations respectively. The stochastic Euler–Poincaré equations were previously derived from a stochastic variational principle by Holm (2015), which we briefly review. Solutions of these equations do not obey pathwise energy conservation/dissipation in general. In contrast, we also discuss a class of stochastic fluid models, solutions of which possess energy theorems but do not, in general, preserve circulation theorems. 
    more » « less
  2. Abstract We first give a constructive answer to the attenuated tensor tomography problem on simple surfaces. We then use this result to propose two approaches to produce vector-valued integral transforms, which are fully injective over tensor fields. The first approach is by construction of appropriate weights, which vary along the geodesic flow, generalizing the moment transforms. The second one is by changing the pairing with the tensor field to generate a collection of transverse ray transforms. 
    more » « less
  3. null (Ed.)
    A bstract We study two-dimensional celestial conformal field theory describing four- dimensional $$ \mathcal{N} $$ N =1 supergravity/Yang-Mills systems and show that the underlying symmetry is a supersymmetric generalization of BMS symmetry. We construct fermionic conformal primary wave functions and show how they are related via supersymmetry to their bosonic partners. We use soft and collinear theorems of supersymmetric Einstein-Yang- Mills theory to derive the OPEs of the operators associated to massless particles. The bosonic and fermionic soft theorems are shown to form a sequence under supersymmetric Ward identities. In analogy with the energy momentum tensor, the supercurrents are shadow transforms of soft gravitino operators and generate an infinite-dimensional super- symmetry algebra. The algebra of $$ {\mathfrak{sbms}}_4 $$ sbms 4 generators agrees with the expectations based on earlier work on the asymptotic symmetry group of supergravity. We also show that the supertranslation operator can be written as a product of holomorphic and anti-holomorphic supercurrents. 
    more » « less
  4. Consider the inverse random source scattering problem for the two-dimensional time-harmonic elastic wave equation with a linear load. The source is modeled as a microlocally isotropic generalized Gaussian random function whose covariance operator is a classical pseudodifferential operator. The goal is to recover the principal symbol of the covariance operator from the displacement measured in a domain away from the source. For such a distributional source, we show that the direct problem has a unique solution by introducing an equivalent Lippmann--Schwinger integral equation. For the inverse problem, we demonstrate that, with probability one, the principal symbol of the covariance operator can be uniquely determined by the amplitude of the displacement averaged over the frequency band, generated by a single realization of the random source. The analysis employs the Born approximation, asymptotic expansions of the Green tensor, and microlocal analysis of the Fourier integral operators. 
    more » « less
  5. Abstract Nonlinear light–matter interaction, as the core of ultrafast optics, bulk photovoltaics, nonlinear optical sensing and imaging, and efficient generation of entangled photons, has been traditionally studied by first-principles theoretical methods with the sum-over-states approach. However, this indirect method often suffers from the divergence at band degeneracy and optical zeros as well as convergence issues and high computation costs when summing over the states. Here, using shift vector and shift current conductivity tensor as an example, we present a gauge-invariant generalized approach for efficient and direct calculations of nonlinear optical responses by representing interband Berry curvature, quantum metric, and shift vector in a generalized Wilson loop. This generalized Wilson loop method avoids the above cumbersome challenges and allows for easy implementation and efficient calculations. More importantly, the Wilson loop representation provides a succinct geometric interpretation of nonlinear optical processes and responses based on quantum geometric tensors and quantum geometric potentials and can be readily applied to studying other excited-state responses. 
    more » « less