skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linear One-Bit Precoding in Massive MIMO: Asymptotic SEP Analysis and Optimization
This paper focuses on the analysis and optimization of a class of linear one-bit precoding schemes for a downlink massive MIMO system under Rayleigh fading channels. The considered class of linear one-bit precoding is fairly general, including the well-known matched filter (MF) and zero-forcing (ZF) precoding schemes as special cases. Our analysis is based on an asymptotic framework where the numbers of transmit antennas and users in the system grow to infinity with a fixed ratio. We show that, under the asymptotic assumption, the symbol error probability (SEP) of the considered linear one-bit precoding schemes converges to that of a scalar “signal plus independent Gaussian noise” model. This result enables us to provide accurate predictions for the SEP of linear one-bit precoding. Additionally, we also derive the optimal linear one-bit precoding scheme within the considered class based on our analytical results. Simulation results demonstrate the excellent accuracy of the SEP prediction and the optimality of the derived precoder.  more » « less
Award ID(s):
2225575
PAR ID:
10528885
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-9626-1
Page Range / eLocation ID:
11 to 15
Format(s):
Medium: X
Location:
Shanghai, China
Sponsoring Org:
National Science Foundation
More Like this
  1. A promising approach to deal with the high hardware cost and energy consumption of massive MIMO transmitters is to use low-resolution digital-to-analog converters (DACs) at each antenna element. This leads to a transmission scheme where the transmitted signals are restricted to a finite set of voltage levels. This paper is concerned with the analysis and optimization of a low-cost quantized precoding strategy, referred to as linear-quantized precoding, for a downlink massive MIMO system under Rayleigh fading. In linear-quantized precoding, the signals are first processed by a linear precoding matrix and subsequently quantized component-wise by the DAC. In this paper, we analyze both the signal-to-interference-plus-noise ratio (SINR) and the symbol error probability (SEP) performances of such linear-quantized precoding schemes in an asymptotic framework where the number of transmit antennas and the number of users grow large with a fixed ratio. Our results provide a rigorous justification for the heuristic arguments based on the Bussgang decomposition that are commonly used in prior works. Based on the asymptotic analysis, we further derive the optimal precoder within a class of linear-quantized precoders that includes several popular precoders as special cases. Our numerical results demonstrate the excellent accuracy of the asymptotic analysis for finite systems and the optimality of the derived precoder. 
    more » « less
  2. Coarsely quantized MIMO signalling methods have gained popularity in the recent developments of massive MIMO as they open up opportunities for massive MIMO implementation using cheap and power-efficient radio-frequency front-ends. This paper presents a new one-bit MIMO precoding approach using spatial Sigma-Delta (∑Δ) modulation. In previous one-bit MIMO precoding research, one mainly focuses on using optimization to tackle the difficult binary signal optimization problem that arise from the precoding design. Our approach attempts a different route. Assuming angular MIMO channels, we apply ∑Δ modulation—a classical concept in analog-to-digital conversion of temporal signals—in space. The resulting ∑Δ precoding approach has two main advantages: First, we no longer need to deal with binary optimization in ∑Δ precoding design. Particularly, the binary signal restriction is replaced by convex signal amplitude constraints. Second, the impact of the quantization error can be well controlled via modulator design and under appropriate operating conditions. Through symbol error probability analysis, we reveal that the very large number of antennas in massive MIMO provides favorable operating conditions for ∑Δ precoding. In addition, we develop a new ∑Δ modulation architecture that is capable of adapting the channel to achieve nearly zero quantization error for a targeted user. Furthermore, we consider multi-user ∑Δ precoding using the zero-forcing and symbol-level precoding schemes. These two ∑Δ precoding schemes perform considerably better than their direct one-bit quantized counterparts, as simulation results show. 
    more » « less
  3. In massive MIMO, replacing high-resolution ADCs/DACs with low-resolution ones has been deemed as a potential way to significantly reduce the power consumption and hardware costs of massive MIMO implementations. In this context, the challenge lies in how the quantization error effect can be suppressed under low-resolution ADCs/DACs. In this paper we study a spatial sigma-delta (ΣΔ) modulation approach for massive MIMO downlink precoding under one-bit DACs. ΣΔ modulation is a classical signal processing concept for coarse analog-to-digital/digital-to-analog conversion of temporal signals. Fundamentally its idea is to shape the quantization error as high-frequency noise and to avoid using the high-frequency region by oversampling. Assuming a uniform linear array at the base station (BS), we show how ΣΔ modulation can be adapted to the space, or MIMO, case. Essentially, by relating frequency in the temporal case and angle in the spatial case, we develop a spatial ΣΔ modulation solution. By considering sectored array operations we study how the quantization error effect can be reduced, and the effective SNR improved, for zero-forcing (ZF) precoding. Our simulation results show that ZF precoding under spatial ΣΔ modulation performs much better than ZF precoding under direct quantization. 
    more » « less
  4. Power consumption of multiuser (MU) precoding is a major concern in all-digital massive MU multiple-input multiple-output (MIMO) basestations with hundreds of antenna elements operating at millimeter-wave (mmWave) frequencies. We propose to replace part of the linear Wiener filter (WF) precoding matrix by a Finite-Alphabet WF Precoding (FAWP) matrix, which enables the use of low-precision hardware that consumes low power and area. To minimize the performance loss of our approach, we present methods that efficiently compute mean-square error (MSE)-optimal FAWP matrices. Our results show that FAWP matrices are able to approach infinite-precision error-rate and error vector magnitude performance with only 3-bit precoding weights, even when operating under realistic mmWave propagation conditions. Hence, FAWP is a promising approach to substantially reduce power consumption and silicon area in all-digital mmWave massive MU-MIMO systems. 
    more » « less
  5. The quickest change detection problem is studied in a general context of monitoring a large number K of data streams in sensor networks when the “trigger event” may affect different sensors differently. In particular, the occurring event might affect some unknown, but not necessarily all, sensors and also could have an immediate or delayed impact on those affected sensors. Motivated by censoring sensor networks, we develop scalable communication-efficient schemes based on the sum of those local cumulative sum (CUSUM) statistics that are “large” under either hard, soft, or order thresholding rules. Moreover, we provide the detection delay analysis of these communication-efficient schemes in the context of monitoring K independent data streams and establish their asymptotic statistical properties under two regimes: one is the classical asymptotic regime when the dimension K is fixed, and the other is the modern asymptotic regime when the dimension K goes to infinity: Our theoretical results illustrate the deep connections between communication efficiency and statistical efficiency. 
    more » « less