Abstract This paper addresses the approximation of fractional harmonic maps. Besides a unit-length constraint, one has to tackle the difficulty of nonlocality. We establish weak compactness results for critical points of the fractional Dirichlet energy on unit-length vector fields. We devise and analyze numerical methods for the approximation of various partial differential equations related to fractional harmonic maps. The compactness results imply the convergence of numerical approximations. Numerical examples on spin chain dynamics and point defects are presented to demonstrate the effectiveness of the proposed methods. 
                        more » 
                        « less   
                    
                            
                            Gauge preheating with full general relativity
                        
                    
    
            Abstract We study gauge preheating following pseudoscalar-driven inflation in full general relativity. We implement the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) scheme to solve the full nonlinear evolution of the metric alongside the dynamics of the pseudoscalar and gauge fields. The dynamics of the background and emission of gravitational waves are broadly consistent with simulations in a Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime. We find large, localized overdensities in the BSSN simulations of orderδ=δρ/ρ∼ 30, and the dimensionless power spectrum ofδpeaks above unity. These overdense regions are seeded on length scales only slightly smaller than the horizon, and have a compactnessC∼ 0.1. The scale of peak compactness is shorter than the Jeans length, which implies that pressure of the matter fields plays an important role in the evolution of these objects. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2309919
- PAR ID:
- 10529022
- Publisher / Repository:
- IOP Science
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2024
- Issue:
- 03
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 017
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Tropical cyclones (TCs) are often generated from preexisting “seed” vortices. Seeds with higher persistence might have a higher chance to undergo TC genesis. What controls seed persistence remains unclear. This study proposes that planetary Rossby wave drag is a key factor that affects seed persistence. Using recently developed theory for the response of a vortex to the planetary vorticity gradient, a new parameter given by the ratio of the maximum wind speed (Vmax) to the Rhines speed at the radius of maximum wind (Rmax), here termed “vortex structural compactness” (Cυ), is introduced to characterize the vortex weakening by planetary Rossby wave drag. The relationship between vortex compactness and weakening rate is tested via barotropicβ-plane experiments. The vortex’s initialCυis varied by systematically varying their initialVmaxandRmaxin idealized wind profile models. Experiments are also conducted with real-world seed vortices from reanalysis data, which possess natural compactness variability. The weakening rate depends strongly on the vortex’s initialCυacross both idealized and real-world experiments, and the initial axis-asymmetry introduces minor differences. Experiments doubling the size of seed vortices cause them to weaken more rapidly, in line with other experiment sets. The dependence of the weakening rate on initial compactness can be predicted from a simple theory, which is more robust for more compact vortices. Our results suggest that a seed’s structure strongly modulates how long it can persist in the presence of a planetary vorticity gradient. Connections to real seeds on Earth are discussed. Significance StatementThis study explores the evolution of tropical cyclone (TC) seeds, which are preexisting weakly rotating rainstorms, in a simple setting that isolates the dynamical effects of the rotating sphere. It is not clear why some seeds can persist for a longer duration and might have a higher chance to eventually undergo genesis. We proposed that a factor called “planetary Rossby wave drag” plays a crucial role in this process. To investigate this, we introduce a new parameter called “compactness” to describe how the size and intensity of a seed vortex determines how quickly it will weaken due to this drag. We conducted experiments with numerical simulations and real-world TC seeds to test our ideas. Our findings show that the initial compactness of seeds strongly influences how quickly they weaken. We have developed a formula to predict how quickly these seeds weaken based on their compactness, which is especially accurate for more compact seeds. This research helps us understand how planetary Rossby wave drag affects the persistence of a TC seed and, ultimately, how it might impact the frequency of TCs.more » « less
- 
            A<sc>bstract</sc> The strong CP problem is solved in Parity symmetric theories, with the electroweak gauge group containing SU(2)L× SU(2)Rbroken by the minimal set of Higgs fields. Neutrino masses may be explained by adding the same number of gauge singlet fermions as the number of generations. The neutrino masses vanish at tree-level and are only radiatively generated, leading to larger couplings of right-handed neutrinos to Standard Model particles than with the tree-level seesaw mechanism. We compute these radiative corrections and the mixing angles between left- and right-handed neutrinos. We discuss sensitivities to these right-handed neutrinos from a variety of future experiments that search for heavy neutral leptons with masses from tens of MeV to the multi-TeV scale.more » « less
- 
            Abstract Astronomical cycles are strongly expressed in marine geological records, providing important insights into Earth system dynamics and an invaluable means of constructing age models. However, how various astronomical periods are filtered by the Earth system and the mechanisms by which carbon reservoirs and climate components respond, particularly in absence of dynamic ice sheets, is unclear. Using an Earth system model that includes feedbacks between climate, ocean circulation, and inorganic (carbonate) carbon cycling relevant to geological timescales, we systematically explore the impact of astronomically modulated insolation forcing and its expression in model variables most comparable to key paleoceanographic proxies (temperature, the δ13C of inorganic carbon, and sedimentary carbonate content). Temperature predominately responds to short and long eccentricity and is little influenced by the modeled carbon cycle feedbacks. In contrast, the cycling of nutrients and carbon in the ocean generates significant precession power in atmospheric CO2, benthic ocean δ13C, and sedimentary wt% CaCO3, while inclusion of marine sedimentary and weathering processes shifts power to the long eccentricity period. Our simulations produce reducedpCO2and dissolved inorganic carbon (DIC) δ13C at long eccentricity maxima and, contrary to early Cenozoic marine records, CaCO3preservation in the model is enhanced during eccentricity‐modulated warmth. Additionally, the magnitude of δ13C variability simulated in our model underestimates marine proxy records. These model‐data discrepancies hint at the possibility that the Paleogene silicate weathering feedback was weaker than modeled here and that additional organic carbon cycle feedbacks are necessary to explain the full response of the Earth system to astronomical forcing.more » « less
- 
            Abstract Astronomical cycles are strongly expressed in marine geological records, providing important insights into Earth system dynamics and an invaluable means of constructing age models. However, how various astronomical periods are filtered by the Earth system and the mechanisms by which carbon reservoirs and climate components respond, particularly in absence of dynamic ice sheets, is unclear. Using an Earth system model that includes feedbacks between climate, ocean circulation, and inorganic (carbonate) carbon cycling relevant to geological timescales, we systematically explore the impact of astronomically‐modulated insolation forcing and its expression in model variables most comparable to key paleoceanographic proxies (temperature, the δ13C of inorganic carbon, and sedimentary carbonate content). Temperature predominately responds to obliquity and is little influenced by the modeled carbon cycle feedbacks. In contrast, the cycling of nutrients and carbon in the ocean generates significant precession power in atmospheric CO2, benthic ocean δ13C, and sedimentary wt% CaCO3, while inclusion of marine sedimentary and weathering processes shifts power to the long eccentricity period. Our simulations produce reducedpCO2and dissolved inorganic carbon δ13C at long eccentricity maxima and, contrary to early Cenozoic marine records, CaCO3preservation in the model is enhanced during eccentricity modulated warmth. Additionally, the magnitude of δ13C variability simulated in our model underestimates marine proxy records. These model‐data discrepancies hint at the possibility that the Paleogene silicate weathering feedback was weaker than modeled here and that additional organic carbon cycle feedbacks are necessary to explain the full response of the Earth system to astronomical forcing.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    