skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Four Years of Meander‐Bend Evolution Captured by Drone‐Based Lidar Reveals Lack of Width Maintenance on the White River, Indiana, USA
Meandering rivers experience fluctuations in width whenever riverbanks migrate in different directions or at different rates, which can be observed after individual floods. However, meandering rivers maintain approximately constant widths over decadal timescales. This implies some timescale below which width fluctuates as banks migrate independently, and above which width is maintained by a bank‐coupling process. This coupling is thought to occur either as point bar deposition events induce cutbank erosion (bar‐push), or as cutbank erosion events induce point bar deposition (bank‐pull). This coupling, however, has been challenging to observe in natural rivers due to limited event‐scale field data. We present results from a 4.5‐year campaign with 22 drone‐based lidar surveys of a single point bar and cutbank (∼0.35 km2in area) on the White River near Worthington, Indiana, USA. The middle point bar experienced net erosion (5,400 m3), but net aggradation (17,100 m3) between 2019 and 2022 when including perennially submerged regions. This aggradation was less than the 35,700 m3of cutbank erosion over the same period. Combined, we have observed widening (1.58 m/yr bend‐averaged; 3.08 m/yr near apex) over the study period as point bar deposition has not kept up with cutbank erosion. Finally, we suggest that the difference between bar‐push and bank‐pull as width‐maintenance mechanisms may not be resolvable by observing bend widening or narrowing alone without an advancement of current theory, such as determining a long‐term equilibrium width and measuring deviations relative thereto.  more » « less
Award ID(s):
2321056
PAR ID:
10529067
Author(s) / Creator(s):
; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
129
Issue:
6
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Reconstruction of active channel geometry from fluvial strata is critical to constrain the water and sediment fluxes in ancient terrestrial landscapes. Robust methods—grounded in extensive field observations, numerical simulations, and physical experiments—exist for estimating the bankfull flow depth and channel-bed slope from preserved deposits; however, we lack similar tools to quantify bankfull channel widths. We combined high-resolution lidar data from 134 meander bends across 11 rivers that span over two orders of magnitude in size to develop a robust, empirical relation between the bankfull channel width and channel-bar clinoform width (relict stratigraphic surfaces of bank-attached channel bars). We parameterized the bar cross-sectional shape using a two-parameter sigmoid, defining bar width as the cross-stream distance between 95% of the asymptotes of the fit sigmoid. We combined this objective definition of the bar width with Bayesian linear regression analysis to show that the measured bankfull flow width is 2.34 ± 0.13 times the channel-bar width. We validated our model using field measurements of channel-bar and bankfull flow widths of meandering rivers that span all climate zones (R2 = 0.79) and concurrent measurements of channel-bar clinoform width and mud-plug width in fluvial strata (R2 = 0.80). We also show that the transverse bed slopes of bars are inversely correlated with bend curvature, consistent with theory. Results provide a simple, usable metric to derive paleochannel width from preserved bar clinoforms. 
    more » « less
  2. Abstract Rapid warming in the Arctic threatens to destabilize mercury (Hg) deposits contained within soils in permafrost regions. Yet current estimates of the amount of Hg in permafrost vary by ∼4 times. Moreover, how Hg will be released to the environment as permafrost thaws remains poorly known, despite threats to water quality, human health, and the environment. Here we present new measurements of total mercury (THg) contents in discontinuous permafrost in the Yukon River Basin in Alaska. We collected riverbank and floodplain sediments from exposed banks and bars near the villages of Huslia and Beaver. Median THg contents were 49+13/−21ng THg g sediment−1and 39+16/−18ng THg g sediment−1for Huslia and Beaver, respectively (uncertainties as 15th and 85th percentiles). Corresponding THg:organic carbon ratios were 5.4+2.0/−2.4Gg THg Pg C−1and 4.2+2.4/−2.9Gg THg Pg C−1. To constrain floodplain THg stocks, we combined measured THg contents with floodplain stratigraphy. Trends of THg increasing with smaller sediment size and calculated stocks in the upper 1 m and 3 m are similar to those suggested for this region by prior pan-Arctic studies. We combined THg stocks and river migration rates derived from remote sensing to estimate particulate THg erosional and depositional fluxes as river channels migrate across the floodplain. Results show similar fluxes within uncertainty into the river from erosion at both sites (95+12/−47kg THg yr−1and 26+154/−13kg THg yr−1at Huslia and Beaver, respectively), but different fluxes out of the river via deposition in aggrading bars (60+40/−29kg THg yr−1and 10+5.3/−1.7kg THg yr−1). Thus, a significant amount of THg is liberated from permafrost during bank erosion, while a variable but generally lesser portion is subsequently redeposited by migrating rivers. 
    more » « less
  3. Abstract Many meandering rivers migrate, at rates that vary both along‐stream and inversely with the observation interval. Many numerical models have been developed to predict this migration; their success is usually evaluated statistically or by qualitative comparison to observations in map view. We propose a framework to test migration models that unites these statistical, spatial, and temporal perspectives. We measure model fit with a statistic that compares the magnitude and direction of migration between predictions and observations. Model fit is contextualized in space, using a dimensionless coordinate system based in the location along a half‐meander bend; and in time, using a dimensionless observation interval that accounts for channel scale and migration rate. We applied this framework to test predictions for a curvature‐driven model of channel migration, using data from seven rapidly migrating rivers in the Amazon Basin and 103 more slowly migrating rivers across the continental US, as reconstructed from a legacy data set. We find that across both datasets, channel migration rates peak slightly downstream of the bend apex. Migration rate underestimation/overestimation tends to occur when the observed rate is greater/less than its median along the channel. Predicted migration direction opposes observations for slowly migrating locations and upstream of the bend apex. Model forecasts break down if the channel migrates by more than its width. The analysis framework is portable to testing other models of channel migration, and can help improve predictions for the stability of infrastructure along rivers and for landscape change over geologic timescales. 
    more » « less
  4. Abstract Beaver dam analogs (BDAs) are a stream restoration technique that is rapidly gaining popularity in the western United States. These low‐cost, stream‐spanning structures, designed after natural beaver dams, are being installed to confer the ecologic, hydrologic, and geomorphic benefits of beaver dams in streams that are often too degraded to provide suitable beaver habitat. BDAs are intended to slow streamflow, reduce the erosive power of the stream, and promote aggradation, making them attractive restoration tools in incised channels. Despite increasing adoption of BDAs, few studies to date have monitored the impacts of BDAs on channel form. Here, we examine the geomorphic changes that occurred within the first year of restoration efforts in Wyoming using high‐resolution visible light orthomosaics and elevation data collected with unoccupied aerial vehicles (UAVs). By leveraging the advantages of rapidly acquired images from UAV surveys with recent advancements in structure‐from‐motion photogrammetry, we constructed centimeter‐scale digital elevation models (DEMs) of the restoration reach and an upstream control reach. Through DEM differencing, we identified areas of enhanced erosion and deposition near the BDAs, suggesting BDA installation initiated a unique geomorphic response in the channel. Both reaches were characterized by net erosion during the first year of restoration efforts. While erosion around the BDAs may seem counter to the long‐term goal of BDA‐induced aggradation, short‐term net erosion is consistent with high precipitation during the study and with theoretical channel evolution models of beaver‐related stream restoration that predict initial channel widening and erosion before net deposition. To better understand the impacts of BDAs on channel morphology and restoration efforts in the western United States, it is imperative that we consistently assess the effects of beaver‐inspired restoration projects across a range of hydrologic and geomorphic settings and that we continue this monitoring in the future. 
    more » « less
  5. Abstract Whether permafrost systematically alters the rate of riverbank erosion is a fundamental geomorphic question with significant importance to infrastructure, water quality, and biogeochemistry of high‐latitude watersheds. For over four decades, this question has remained unanswered due to a lack of data. Using remotely sensed imagery, we addressed this knowledge gap by quantifying riverbank erosion rates across the Arctic and subarctic. To compare these rates to non‐permafrost rivers, we assembled a global data set of published riverbank erosion rates. We found that erosion rates in rivers influenced by permafrost are on average nine times lower than non‐permafrost systems; erosion rate differences increase up to 40 times for the largest rivers. To test alternative hypotheses for the observed erosion rate difference, we examined differences in total water yield and erosional efficiency between these rivers and non‐permafrost rivers. Neither of these factors nor differences in river sediment loads provided compelling alternative explanations, leading us to conclude that permafrost limits riverbank erosion rates. This conclusion was supported by field investigations of rates and patterns of erosion along three rivers flowing through discontinuous permafrost in Alaska. Our results show that permafrost limits maximum bank erosion rates on rivers with stream powers greater than 900 Wm−1. On smaller rivers, however, hydrology rather than thaw rate may be the dominant control on bank erosion. Our findings suggest that Arctic warming and hydrological changes should increase bank erosion rates on large rivers but may reduce rates on rivers with drainage areas less than a few thousand km2
    more » « less