Here, we study the homogenization behavior and microstructure of seven Ni-Al-Ti alloys with quaternary additions of γ forming elements 4Cr, 4Co, 4Ru, 4Mo, 4Hf, 4 W and 2Re. To design a homogenization treatment, the as-cast microstructure is analyzed revealing the diffusion distances x between dendrite cores and interdendritic regions. The temperatures for homogenization are determined using differential scanning calorimetry (DSC) and Thermo-Calc simulations, to be between 1150 and 1275 °C. The time to achieve homogenization is modelled based on the residual segregation index δ utilizing diffusion distance, homogenization temperature and diffusion data. Electron probe micro analyzer (EPMA) measurements show that our predictions match for the 4Cr, 4Co, 4Ru, 4 W and 2Re alloys while the 4Hf alloy shows insufficient homogenization. Transmission electron microscopy (TEM) reveals a two-phase γ/γ’ microstructure after 750 °C / 24 h, whereby the 4Co and 4Ru alloys form hierarchical microstructures. We observe γ plates in the 4Co alloy and γ spheres in the 4Ru alloy. Ru in the 4Ru alloy is involved in stabilizing the morphology of γ spheres. We provide a straightforward method for the design of homogenization treatments of Ni-based superalloys and demonstrate an alloy design pathway for tailoring the phase stability of hierarchical microstructures. 
                        more » 
                        « less   
                    
                            
                            Influence of the Nb–Al ratio on homogenization behavior and hierarchical microstructures in high-entropy superalloys
                        
                    
    
            In this investigation, we explore the impact of the Nb–Al ratio on the microstructural and mechanical properties of high-entropy superalloys (HESAs), focusing on hierarchical microstructures. Utilizing a series of HESAs with varying Nb–Al ratios, our study employs advanced characterization techniques, including differential scanning calorimetry (DSC) for thermal analysis, electron probe micro-analyzer (EPMA) for compositional analysis for the design of a homogenization treatment at 1500 K/24 h. Transmission electron microscopy (TEM) reveals that the increasing Nb–Al ratio refines the γ' precipitates and influences the size and volume fraction of embedded hierarchical γ particles. ThermoCalc equilibrium phase analysis and Vegard's-law calculations reveal a minimal lattice misfit between these phases, highlighting the interplay between Nb–Al ratio and phase stability. The increasing Nb–Al ratio inhibits the formation of hierarchical γ particles. We observe an enhancement in hardness from 433 HV to 492 HV with an increasing Nb–Al ratio. This study provides valuable insights into the role of Nb and the Nb–Al ratio in HESAs with hierarchical microstructures, demonstrating its significant influence on γ particle formation within γ' precipitates and mechanical strength. The findings advance our understanding of alloy design and pave the way for developing advanced HESAs for high-temperature applications. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2105364
- PAR ID:
- 10529112
- Publisher / Repository:
- Sciencedirect
- Date Published:
- Journal Name:
- Intermetallics
- Volume:
- 172
- Issue:
- C
- ISSN:
- 0966-9795
- Page Range / eLocation ID:
- 108380
- Subject(s) / Keyword(s):
- High-entropy superalloy Alloy design Segregation Hierarchical microstructure Mechanical properties
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The microstructure, phase behavior, mechanical properties, and corrosion properties of a series of Al10Cr15(Fe3Mn)75−x(Ni)x medium-entropy alloys (MEAs) spanning 0–20 at% Ni were studied to elucidate the chemistry-structure-property relationship of this system as a function of Ni content. This work demonstrates that from an initial BCC phase Al10Cr15(Fe3Mn)75 MEA, Ni additions of 5 and 10 at% result in the formation of ordered B2-phase precipitates due to interaction of Ni with Al, resulting in high hardness (∼475 HV). Further Ni addition to 15 at% leads to a dual-phase FCC+BCC structure, with B2 phase precipitates distributed in the BCC matrix relatively rich in Al and Ni but depleted in Cr. This dual-phase structure has a high yield strength (YS) of 600 MPa with a total elongation of 15%. Additionally, the B2 precipitates in BCC phase serve as preferential sites for corrosion in 0.6 M NaCl. Increasing Ni content to 20 at% results in lower YS of 300 MPa, but a significant improvement in ductility and corrosion resistance due to the increased FCC phase fraction.more » « less
- 
            We utilize elevated temperature physical vapor deposition (PVD) techniques to design metal/MAX multilayered nanocomposite thin films with alternating nanoscale metallic (Nb, Ti) and MAX phase (Ti2AlC) layer thicknesses. These metal/MAX nanolaminate architectures attempt to exploit a unique hierarchical topology – as interfaces between the layers are expected to be in direct competition with the internal interfaces within the MAX layers, to drive their tunable macroscopic mechanical behavior. Two metal/MAX nanolaminates – Nb/Ti2AlC and Ti/Ti2AlC – were deposited. The Nb/Ti2AlC metal/MAX system showed highly diffused layer interfaces with distinct Ti – rich and Nb-Al – rich layers, with the presence of MAX phase alongside TiC and other Ti-Al and Nb-Al intermetallic phases. The Nb/Ti2AlC system possessed a layered architecture, though the MAX phases were not found to be continuously present in each alternating layer. The second Ti/Ti2AlC system showed a non-lamellar nanocomposite microstructure and the formation of mixed Tin+1AlCn phases (a mix of n = 1, 2), and no indication of layering. Diffusion occurring between the metal/MAX layers in both cases, likely due to the elevated temperatures during the deposition process, is speculated as the likely cause of these resultant microstructures. The mechanical properties of both systems were evaluated using micromechanical (nanoindentation and micro-pillar compression) techniques, which demonstrated high strengths for both systems (Nb system: yield and instability strengths of 4.88±0.1 GPa and 5.57±0.03 GPa, Ti system: yield and instability strength of 5.61±0.28 GPa and 6.21±0.25 GPa). This work highlights the promising mechanical properties of metal/MAX multilayered depositions and summarizes the challenges in PVD synthesis of metal/MAX multilayered nanolaminates.more » « less
- 
            Al-Mg alloy disks were produced from Mg sandwiched between Al through 100 turns of high-pressure torsion (HPT) at 6.0 GPa at room temperature, resulting in high microhardness of Hv 300–350 in regions experiencing a nominal shear strain > ~ 390. While compositional mapping using scanning electron microscopy energy-dispersive spectroscopy (EDS) showed a uniform distribution of Mg through the disk thickness at 1.5 mm and 3.0 mm from the disk center, transmission electron microscopy EDS showed a heterogeneous distribution of Mg remained on the nanoscale. Although HPT induces enough mixing to result in face-center-cubic Al with supersaturations of Mg of up to ~ 20 at.% near the disk surfaces, β-Al3Mg2, γ-Al12Mg17 and Al2Mg intermetallic phases were identified by electron diffraction throughout the disk thickness even in regions experiencing high shear strain. This study visually captures detailed compositional heterogeneity throughout the sample thickness following intense mechanical alloying, nanoscale re-structuring and phase transformations.more » « less
- 
            null (Ed.)Abstract Precipitation strengthening of alloys by the formation of secondary particles (precipitates) in the matrix is one of the techniques used for increasing the mechanical strength of metals. Understanding the precipitation kinetics such as nucleation, growth, and coarsening of these precipitates is critical for evaluating their hardening effects and improving the yield strength of the alloy during heat treatment. To optimize the heat treatment strategy and accelerate alloy design, predicting precipitate hardening effects via numerical methods is a promising complement to trial-and-error-based experiments and the physics-based phase-field method stands out with the significant potential to accurately predict the precipitate morphology and kinetics. In this study, we present a phase-field model that captures the nucleation, growth, and coarsening kinetics of precipitates during isothermal heat treatment conditions. Thermodynamic data, diffusion coefficients, and misfit strain data from experimental or lower length-scale calculations are used as input parameters for the phase-field model. Classical nucleation theory is implemented to capture the nucleation kinetics. As a case study, we apply the model to investigate γ″ precipitation kinetics in Inconel 625. The simulated mean particle length, aspect ratio, and volume fraction evolution are in agreement with experimental data for simulations at 600 °C and 650 °C during isothermal heat treatment. Utilizing the meso-scale results from the phase-field simulations as input parameters to a macro-scale coherency strengthening model, the evolution of the yield strength during heat treatment was predicted. In a broader context, we believe the current study can provide practical guidance for applying the phase-field approach as a link in the multiscale modeling of material properties.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    