Abstract The weather of the McMurdo Dry Valleys, Antarctica, the largest ice‐free region of the Antarctica, has been continuously monitored since 1985 with currently 14 operational meteorological stations distributed throughout the valleys. Because climate is based on a 30‐year record of weather, this is the first study to truly define the contemporary climate of the McMurdo Dry Valleys. Mean air temperature and solar radiation based on all stations were −20°C and 102 W m−2, respectively. Depending on the site location, the mean annual air temperatures on the valleys floors ranged between −15°C and −30°C, and mean annual solar radiation varied between 72 and 122 W m−2. Surface air temperature decreased by 0.7°C per decade from 1986 to 2006 at Lake Hoare station (longest continuous record), after which the record is highly variable with no trend. All stations with sufficiently long records showed similar trend shifts in 2005 ±1 year. Summer is defined as November through February, using a physically based process: up‐valley warming from the coast associated with a change in atmospheric stability.
more »
« less
Response of a Terrestrial Polar Ecosystem to the March 2022 Antarctic Weather Anomaly
Abstract Record high temperatures were documented in the McMurdo Dry Valleys, Antarctica, on 18 March 2022, exceeding average temperatures for that day by nearly 30°C. Satellite imagery and stream gage measurements indicate that surface wetting coincided with this warming more than 2 months after peak summer thaw and likely exceeded thresholds for rehydration and activation of resident organisms that typically survive the cold and dry conditions of the polar fall in a freeze‐dried state. This weather event is notable in both the timing and magnitude of the warming and wetting when temperatures exceeded 0°C at a time when biological communities and streams have typically entered a persistent frozen state. Such events may be a harbinger of future climate conditions characterized by warmer temperatures and greater thaw in this region of Antarctica, which could influence the distribution, activity, and abundance of sentinel taxa. Here we describe the ecosystem responses to this weather anomaly reporting on meteorological and hydrological measurements across the region and on later biological observations from Canada Stream, one of the most diverse and productive ecosystems within the McMurdo Dry Valleys.
more »
« less
- PAR ID:
- 10529477
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 12
- Issue:
- 8
- ISSN:
- 2328-4277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Continuous permafrost is present across the McMurdo Dry Valleys of southern Victoria Land, Antarctica. While summer active-layer thaw is common in the low-elevation portions of the Dry Valleys, active layers have not significantly thickened over time. However, in some locations, coastal Antarctic permafrost has begun to warm. Here, based on soil and meteorological measurements from 1993 to 2023, we show that wintertime soil temperatures have increased across multiple sites in the Dry Valleys, at rates exceeding the pace of summer soil warming. Linear warming trends over time are significant (P< 0.05) at six of seven soil monitoring sites. Winter warming is strongly correlated with increased numbers of down-valley wind events (Foehn/katabatics), but it may also be driven by increased incident longwave radiation at some stations (although winter longwave increase is not significant over time). While down-valley wind events increase winter warming, when down-valley wind events are excluded from the record, winter soil warming remains persistent and significant, suggesting that Antarctic soils are experiencing less cold winters over time in response to regional warming. Together, these observations suggest that some Antarctic permafrost may be approaching a transition to discontinuous permafrost in some regions as winter freezing intensity is reduced over time.more » « less
-
Maresca, Julia A (Ed.)ABSTRACT Sediments in cryoconite holes and meltwater streams in the McMurdo Dry Valleys, Antarctica, provide both substrates and conditions that support life in an arid polar desert. Here, we report the genomic sequences of eight environmental, bacterial isolates from Canada Glacier cryoconite holes and stream. These isolates span three major phyla.more » « less
-
Abstract Drylands are unique among terrestrial ecosystems in that they have a significant proportion of primary production facilitated by non‐vascular plants such as colonial cyanobacteria, moss, and lichens, i.e., biocrusts, which occur on and in the surface soil. Biocrusts inhabit all continents, including Antarctica, an increasingly dynamic continent on the precipice of change. Here, we describe in‐situ field surveying and sampling, remote sensing, and modeling approaches to assess the habitat suitability of biocrusts in the Lake Fryxell basin of Taylor Valley, Antarctica, which is the main site of the McMurdo Dry Valleys Long‐Term Ecological Research Program. Soils suitable for the development of biocrusts are typically wetter, less alkaline, and less saline compared to unvegetated soils. Using random forest models, we show that gravimetric water content, electrical conductivity, and snow frequency are the top predictors of biocrust presence and biomass. Areas most suitable for the growth of dense biocrusts are soils associated with seasonal snow patches. Using geospatial data to extrapolate our habitat suitability model to the whole basin predicts that biocrusts are present in 2.7 × 105m2and contain 11–72 Mg of aboveground carbon, based on the 90% probability of occurrence. Our study illustrates the synergistic effect of combining field and remote sensing data for understanding the distribution and biomass of biocrusts, a foundational community in the carbon balance of this region. Extreme weather events and changing climate conditions in this region, especially those influencing snow accumulation and persistence, could have significant effects on the future distribution and abundance of biocrusts and therefore soil organic carbon storage in the McMurdo Dry Valleys.more » « less
-
Abstract In polar regions, where many glaciers are cold based (frozen to their beds), biological communities on the glacier surface can modulate and transform nutrients, controlling downstream delivery. However, it remains unclear whether supraglacial streams are nutrient sinks or sources and the rates of nutrient processing. In order to test this, we conducted tracer injections in three supraglacial streams (62 to 123 m long) on Canada Glacier in the Taylor Valley, of the McMurdo Dry Valleys, Antarctica. We conducted a series of additions including nitrate (N), N + phosphate (P), N + P + glucose (C), and N + C. In two reaches, N‐only additions resulted in N uptake. The third reach showed net N release during the N‐only addition, but high N uptake in the N + P addition, indicating P‐limitation or N + P colimitation. Coinjecting C did not increase N‐uptake. Additionally, in these systems at low N concentrations the streams can be a net source of nitrogen. We confirmed these findings using laboratory‐based nutrient incubation experiments on sediment collected from stream channels on Canada Glacier and two other glaciers in the Taylor Valley. Together, these results suggest there is active biological processing of nutrients occurring in these supraglacial streams despite low sediment cover, high flow velocities, and cold temperatures, modifying the input signals to proglacial streams. As glaciers worldwide undergo rapid change, these findings further our understanding of how melt generated on glacier surfaces set the initial nutrient signature for subglacial and downstream environments.more » « less
An official website of the United States government
