Abstract Fish skulls are often highly kinetic, with multiple linkage and lever systems powered by a diverse suite of muscles. Comparative analysis of the evolution of soft-tissue structures in the fish skull is often limited under traditional approaches, while new imaging techniques like diceCT (diffusible iodine-based contrast-enhanced computed tomography) allow for high-resolution imaging of muscles in situ. Darters (Percidae: Etheostomatinae) are a diminutive and species-rich clade of lotic freshwater fishes, which show diverse head shapes believed to be associated with different foraging strategies. We used diceCT to sample all major cranial adductors and abductors responsible for movement of the jaw, hyoid, operculum, and suspensorium from 29 species. We applied comparative phylogenetic approaches to analyse the evolutionary trends in muscle size across the clade. We found two major patterns: (i) darter cranial muscles show fundamental trade-offs relating to investment in musculature, as well as buccal expansion vs. biting attributes; early divergence in muscle size appears to be associated with shifts in habitat use and foraging; (ii) darter adductor mandibulae show high variation in architecture (fibre orientation, divisions). This study highlights how new imaging techniques can provide novel insights into the anatomy of even well-sampled/represented clades.
more »
« less
The impact of measurement technique and sampling on estimates of skeletal muscle fibre architecture
Abstract Skeletal muscle fibre architecture provides important insights into performance of vertebrate locomotor and feeding behaviours. Chemical digestion and in situ sectioning of muscle bellies along their lengths to expose fibres, fibre orientation and intramuscular tendon, are two classical methods for estimating architectural variables such as fibre length (Lf) and physiological cross‐sectional area (PCSA). It has recently been proposed thatLfestimates are systematically shorter and hence less accurate using in situ sectioning. Here we addressed this hypothesis by comparingLfestimates between the two methods for the superficial masseter and temporalis muscles in a sample of strepsirrhine and platyrrhine primates. Means or single‐specimenLfestimates using chemical digestion were greater in 17/32 comparisons (53.13%), indicating the probability of achieving longer fibres using chemical digestion is no greater than chance in these taxonomic samples. We further explored the impact of sampling on scaling ofLfand PCSA in platyrrhines applying a bootstrapping approach. We found that sampling—both numbers of individuals within species and representation of species across the clade significantly influence scaling results ofLfand PCSA in platyrrhines. We show that intraspecific and clade sampling strategies can account for differences between previously published platyrrhine scaling studies. We suggest that differences in these two methodological approaches to assessing muscle architecture are relatively less consequential when estimatingLfand PCSA for comparative studies, whereas achieving more reliable estimates within species through larger samples and representation of the full clade space are important considerations in comparative studies of fibre architecture and scaling.
more »
« less
- Award ID(s):
- 2314898
- PAR ID:
- 10529605
- Publisher / Repository:
- The Anatomical Record
- Date Published:
- Journal Name:
- The Anatomical Record
- Volume:
- 307
- Issue:
- 9
- ISSN:
- 1932-8486
- Page Range / eLocation ID:
- 3071 to 3084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary A prevailing hypothesis posits that achieving higher maximum rates of leaf carbon gain and water loss is constrained by geometry and/or selection to limit the allocation of epidermal area to stomata (fS). Under this ‘stomatal‐area minimization hypothesis’, highergs,maxis associated with greater numbers of smaller stomata because this trait combination increasesgs,maxwith minimal increase infS, leading to relative conservation offSsemi‐independent ofgs,maxdue to coordination in stomatal size, density, and pore depth. An alternative hypothesis is that the evolution of highergs,maxcan be enabled by a greater epidermal area allocated to stomata, leading to positive covariation betweenfSandgs,max; we call this the ‘stomatal‐area adaptation hypothesis’. Under this hypothesis, the interspecific scaling betweengs,max, stomatal density, and stomatal size is a by‐product of selection on a moving optimalgs,max.We integrated biophysical and evolutionary quantitative genetic modeling with phylogenetic comparative analyses of a global data set of stomatal density and size from 2408 vascular forest species. The models present specific assumptions of both hypotheses and deduce predictions that can be evaluated with our empirical analyses of forest plants.There are three main results. First, neither the stomatal‐area minimization nor adaptation hypothesis is sufficient to be supported. Second, estimates of interspecific scaling from common regression methods cannot reliably distinguish between hypotheses when stomatal size is bounded. Third, we reconcile both hypotheses with the data by including an additional assumption that stomatal size is bounded by a wide range and under selection; we refer to this synthetic hypothesis as the ‘stomatal adaptation + bounded size’ hypothesis.This study advances our understanding of scaling between stomatal size and density by mathematically describing specific assumptions of competing hypotheses, demonstrating that existing hypotheses are inconsistent with observations, and reconciling these hypotheses with phylogenetic comparative analyses by postulating a synthetic model of selection ongs,max,fS, and stomatal size.more » « less
-
For the first 100+ million years of their evolutionary history, the majority of mammals were very small, and many exhibited relatively generalized locomotor ecologies. Among extant mammals, small-bodied, generalist species share similar hindlimb bone morphology and locomotor mechanics, but details of their musculature have not been investigated. To examine whether hindlimb muscle architecture properties are also similar, we dissected hindlimb muscles of the gray short-tailed opossum (Monodelphis domestica) and aggregated muscle properties from the literature for three other small-bodied mammals (Mus musculus, Rattus norvegicus, Cavia porcellus). We then studied hindlimb musculature from a whole-limb perspective and by separating the limb into nine anatomical regions. The region analysis explained substantially more variance in the data (r2: 0.601 > 0.074) but only detected six statistically significant pairwise species differences in muscle architecture properties. This finding suggests either deep conservation of therian hindlimb muscle properties or, more likely, a biomechanical constraint imposed by small body size. In addition, we find specialization for either large force production (i.e., PCSA) or longer active working ranges (i.e. long muscle fascicles) in proximal limb regions but neither specialization in more distal limb regions. This functional pattern may be key for small mammals to traverse across uneven and shifting substrates, regardless of environment. These findings are particularly relevant for researchers seeking to reconstruct and model soft tissue properties of extinct mammals during the early evolutionary history of the clade.more » « less
-
Fibre topography of the extracellular matrix governs local mechanical properties and cellular behaviour including migration and gene expression. While quantifying properties of the fibrous network provides valuable data that could be used across a breadth of biomedical disciplines, most available techniques are limited to two dimensions and, therefore, do not fully capture the architecture of three-dimensional (3D) tissue. The currently available 3D techniques have limited accuracy and applicability and many are restricted to a specific imaging modality. To address this need, we developed a novel fibre analysis algorithm capable of determining fibre orientation, fibre diameter and fibre branching on a voxel-wise basis in image stacks with distinct fibre populations. The accuracy of the technique is demonstrated on computer-generated phantom image stacks spanning a range of features and complexities, as well as on two-photon microscopy image stacks of elastic fibres in bovine tendon and dermis. Additionally, we propose a measure of axial spherical variance which can be used to define the degree of fibre alignment in a distribution of 3D orientations. This method provides a useful tool to quantify orientation distributions and variance on image stacks with distinguishable fibres or fibre-like structures.more » « less
-
Abstract Inclusion of edaphic conditions in biogeographical studies typically provides a better fit and deeper understanding of plant distributions. Increased reliance on soil data calls for easily accessible data layers providing continuous soil predictions worldwide. Although SoilGrids provides a potentially useful source of predicted soil data for biogeographic applications, its accuracy for estimating the soil characteristics experienced by individuals in small‐scale populations is unclear. We used a biogeographic sampling approach to obtain soil samples from 212 sites across the midwestern and eastern United States, sampling only at sites where there was a population of one of the 22 species inLobeliasect.Lobelia. We analyzed six physical and chemical characteristics in our samples and compared them with predicted values from SoilGrids. Across all sites and species, soil texture variables (clay, silt, sand) were better predicted by SoilGrids (R2: .25–.46) than were soil chemistry variables (carbon and nitrogen,R2 ≤ .01; pH,R2: .19). While SoilGrids predictions rarely matched actual field values for any variable, we were able to recover qualitative patterns relating species means and population‐level plant characteristics to soil texture and pH. Rank order of species mean values from SoilGrids and direct measures were much more consistent for soil texture (SpearmanrS = .74–.84; allp < .0001) and pH (rS = .61,p = .002) than for carbon and nitrogen (p > .35). Within the speciesL. siphilitica, a significant association, known from field measurements, between soil texture and population sex ratios could be detected using SoilGrids data, but only with large numbers of sites. Our results suggest that modeled soil texture values can be used with caution in biogeographic applications, such as species distribution modeling, but that soil carbon and nitrogen contents are currently unreliable, at least in the region studied here.more » « less
An official website of the United States government

