Social navigation—such as anticipating where gossip may spread, or identifying which acquaintances can help land a job—relies on knowing how people are connected within their larger social communities. Problematically, for most social networks, the space of possible relationships is too vast to observe and memorize. Indeed, people's knowledge of these social relations is well known to be biased and error-prone. Here, we reveal that these biased representations reflect a fundamental computation that abstracts over individual relationships to enable principled inferences about unseen relationships. We propose a theory of network representation that explains how people learn inferential cognitive maps of social relations from direct observation, what kinds of knowledge structures emerge as a consequence, and why it can be beneficial to encode systematic biases into social cognitive maps. Leveraging simulations, laboratory experiments, and “field data” from a real-world network, we find that people abstract observations of direct relations (e.g., friends) into inferences of multistep relations (e.g., friends-of-friends). This multistep abstraction mechanism enables people to discover and represent complex social network structure, affording adaptive inferences across a variety of contexts, including friendship, trust, and advice-giving. Moreover, this multistep abstraction mechanism unifies a variety of otherwise puzzling empirical observations about social behavior. Our proposal generalizes the theory of cognitive maps to the fundamental computational problem of social inference, presenting a powerful framework for understanding the workings of a predictive mind operating within a complex social world.
more »
« less
The latent cognitive structures of social networks
Abstract When people are asked to recall their social networks, theoretical and empirical work tells us that they rely on shortcuts, or heuristics. Cognitive social structures (CSSs) are multilayer social networks where each layer corresponds to an individual’s perception of the network. With multiple perceptions of the same network, CSSs contain rich information about how these heuristics manifest, motivating the question,Can we identify people who share the same heuristics?In this work, we propose a method for identifyingcognitive structureacross multiple network perceptions, analogous to how community detection aims to identifysocial structurein a network. To simultaneously model the joint latent social and cognitive structure, we study CSSs as three-dimensional tensors, employing low-rank nonnegative Tucker decompositions (NNTuck) to approximate the CSS—a procedure closely related to estimating a multilayer stochastic block model (SBM) from such data. We propose the resulting latent cognitive space as an operationalization of the sociological theory ofsocial cognitionby identifying individuals who sharerelational schema. In addition to modeling cognitivelyindependent,dependent, andredundantnetworks, we propose a specific model instance and related statistical test for testing when there issocial-cognitive agreementin a network: when the social and cognitive structures are equivalent. We use our approach to analyze four different CSSs and give insights into the latent cognitive structures of those networks.
more »
« less
- Award ID(s):
- 2143176
- PAR ID:
- 10529851
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Network Science
- ISSN:
- 2050-1242
- Page Range / eLocation ID:
- 1 to 32
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Machines powered by artificial intelligence increasingly permeate social networks with control over resources. However, machine allocation behavior might offer little benefit to human welfare over networks when it ignores the specific network mechanism of social exchange. Here, we perform an online experiment involving simple networks of humans (496 participants in 120 networks) playing a resource-sharing game to which we sometimes add artificial agents (bots). The experiment examines two opposite policies of machine allocation behavior:reciprocal bots, which share all resources reciprocally; andstingy bots, which share no resources at all. We also manipulate the bot’s network position. We show that reciprocal bots make little changes in unequal resource distribution among people. On the other hand, stingy bots balance structural power and improve collective welfare in human groups when placed in a specific network position, although they bestow no wealth on people. Our findings highlight the need to incorporate the human nature of reciprocity and relational interdependence in designing machine behavior in sharing networks. Conscientious machines do not always work for human welfare, depending on the network structure where they interact.more » « less
-
Multilayer networks describe the rich ways in which nodes are related by accounting for different relationships in separate layers. These multiple relationships are naturally represented by an adjacency tensor. In this work we study the use of the nonnegative Tucker decomposition (NNTuck) of such tensors under a KL loss as an expressive factor model that naturally generalizes existing stochastic block models of multilayer networks. Quantifying interdependencies between layers can identify redundancies in the structure of a network, indicate relationships between disparate layers, and potentially inform survey instruments for collecting social network data. We propose definitions of layer independence, dependence, and redundancy based on likelihood ratio tests between nested nonnegative Tucker decompositions. Using both synthetic and real-world data, we evaluate the use and interpretation of the NNTuck as a model of multilayer networks. Algorithmically, we show that using expectation maximization (EM) to maximize the log-likelihood under the NNTuck is step-by-step equivalent to tensorial multiplicative updates for the NNTuck under a KL loss, extending a previously known equivalence from nonnegative matrices to nonnegative tensors.more » « less
-
Abstract High-dimensional categorical data are routinely collected in biomedical and social sciences. It is of great importance to build interpretable parsimonious models that perform dimension reduction and uncover meaningful latent structures from such discrete data. Identifiability is a fundamental requirement for valid modeling and inference in such scenarios, yet is challenging to address when there are complex latent structures. In this article, we propose a class of identifiable multilayer (potentially deep) discrete latent structure models for discrete data, termed Bayesian Pyramids. We establish the identifiability of Bayesian Pyramids by developing novel transparent conditions on the pyramid-shaped deep latent directed graph. The proposed identifiability conditions can ensure Bayesian posterior consistency under suitable priors. As an illustration, we consider the two-latent-layer model and propose a Bayesian shrinkage estimation approach. Simulation results for this model corroborate the identifiability and estimatability of model parameters. Applications of the methodology to DNA nucleotide sequence data uncover useful discrete latent features that are highly predictive of sequence types. The proposed framework provides a recipe for interpretable unsupervised learning of discrete data and can be a useful alternative to popular machine learning methods.more » « less
-
The complex relationships in an urban environment can be captured through multiple interrelated sources of data. These relationships form multilayer networks, that are also spatially embedded in an area, could be used to identify latent patterns. In this work, we propose a low-dimensional representation learning approach that considers multiple layers of a multiplex network simultaneously and is able to encode similarities between nodes across different layers. In particular, we introduce a novel neural network architecture to jointly learn low-dimensional representations of each network node from multiple layers of a network. This process simultaneously fuses knowledge of various data sources to better capture the characteristics of the nodes. To showcase the proposed method we focus on the problem of identifying the functionality of an urban region. Using a variety of public data sources for New York City, we design a multilayer network and evaluate our approach. Our results indicate that our proposed approach can improve the accuracy of traditional approaches in an unsupervised task.more » « less
An official website of the United States government

