skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Negative Lags on the Viscous Timescale in Quasar Photometry and Prospects for Detecting More with LSST
Abstract The variability of quasar light curves can be used to study the structure of quasar accretion disks. For example, continuum reverberation mapping uses delays between variability in short and long wavelength bands (shortlags) to measure the radial extent and temperature profile of the disk. Recently, a potential reverse lag, where variations in shorter wavelength bands lag the longer wavelength bands at the much longer viscous timescale, was detected for Fairall 9. Inspired by this detection, we derive a timescale for theselongnegative lags from fluctuation propagation models and recent simulations. We use this timescale to forecast our ability to detect long lags using the Vera Rubin Legacy Survey of Space and Time (LSST). After exploring several methods, including the interpolated cross-correlation function, a Von-Neumann estimator,javelin, and a maximum-likelihood Fourier method, we find that our two main methods,javelinand the maximum-likelihood method, can together detect long lags of up to several hundred days in mock LSST light curves. Our methods work best on proposed LSST cadences with long season lengths, but can also work for the current baseline LSST cadence, especially if we add observations from other optical telescopes during seasonal gaps. We find that LSST has the potential to detect dozens to hundreds of additional long lags. Detecting these long lags can teach us about the vertical structure of quasar disks and how it scales with different quasar properties.  more » « less
Award ID(s):
2306950
PAR ID:
10530370
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
AAS
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
956
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
81
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Continuum reverberation mapping probes the size scale of the optical continuum-emitting region in active galactic nuclei (AGN). Through 3 yr of multiwavelength photometric monitoring in the optical with robotic observatories, we perform continuum reverberation mapping on Mrk 876. All wave bands show large-amplitude variability and are well correlated. Slow variations in the light curves broaden the cross-correlation function (CCF) significantly, requiring detrending in order to robustly recover interband lags. We measure consistent interband lags using three techniques (CCF, JAVELIN, and PyROA), with a lag of around 13 days fromutoz. These lags are longer than the expected radius of 12 days for the self-gravitating radius of the disk. The lags increase with wavelength roughly followingλ4/3, as would be expected from thin disk theory, but the lag normalization is approximately a factor of 3 longer than expected, as has also been observed in other AGN. The lag in theiband shows an excess that we attribute to variable Hαbroad-line emission. A flux–flux analysis shows a variable spectrum that followsfν∝λ−1/3, as expected for a disk, and an excess in theiband that also points to strong variable Hαemission in that band. 
    more » « less
  2. Abstract This work studies the relationship between accretion-disk size and quasar properties, using a sample of 95 quasars from the Sloan Digital Sky Survey Reverberation Mapping Project with measured lags between thegandiphotometric bands. Our sample includes disk lags that are both longer and shorter than predicted by the Shakura and Sunyaev model, requiring explanations that satisfy both cases. Although our quasars each have one lag measurement, we explore the wavelength-dependent effects of diffuse broad-line region (BLR) contamination through our sample’s broad redshift range, 0.1 <z< 1.2. We do not find significant evidence of variable diffuse Feiiand Balmer nebular emission in the rms spectra, nor from Anderson–Darling tests of quasars in redshift ranges with and without diffuse nebular emission falling in the observed-frame filters. Contrary to previous work, we do not detect a significant correlation between the measured continuum and BLR lags in our luminous quasar sample, similarly suggesting that our continuum lags are not dominated by diffuse nebular emission. Similar to other studies, we find that quasars with larger-than-expected continuum lags have lower 3000 Å luminosities, and we additionally find longer continuum lags with lower X-ray luminosities and black hole masses. Our lack of evidence for diffuse BLR contribution to the lags indicates that the anticorrelation between continuum lag and luminosity is not likely to be due to the Baldwin effect. Instead, these anticorrelations favor models in which the continuum lag increases in lower-luminosity active galactic nuclei, including scenarios featuring magnetic coupling between the accretion disk and X-ray corona, and/or ripples or rims in the disk. 
    more » « less
  3. Abstract Active galactic nuclei (AGN) light curves observed with different wave bands show that the variability in longer wavelength bands lags the variability in shorter wavelength bands. Measuring these lags, or reverberation mapping, is used to measure the radial temperature profile and extent of AGN disks, typically with a reprocessing model that assumes X-rays are the main driver of the variability in other wavelength bands. To demonstrate how this reprocessing works with realistic accretion disk structures, we use 3D local shearing box multifrequency radiation magnetohydrodynamic simulations to model the UV-emitting region of an AGN disk, which is unstable to the magnetorotational instability and convection. At the same time, we inject hard X-rays (>1 keV) into the simulation box to study the effects of X-ray irradiation on the local properties of the turbulence and the resulting variability of the emitted UV light curve. We find that disk turbulence is sufficient to drive intrinsic variability in emitted UV light curves and that a damped random walk model is a good fit to this UV light curve for timescales >5 days. Meanwhile, X-ray irradiation has negligible impact on the power spectrum of the emitted UV light curve. Furthermore, the injected X-ray and emitted UV light curves are only correlated if there is X-ray variability on timescales >1 day, in which case we find a correlation coefficientr= 0.34. These results suggest that if the opacity for hard X-rays is scattering dominated as in the standard disk model, hard X-rays are not the main driver of reverberation signals. 
    more » « less
  4. UV and optical continuum reverberation mapping is a powerful tool for probing the accretion disk and inner broad-line region. However, recent reverberation mapping campaigns in the X-ray, UV, and optical have found lags consistently longer than those expected from the standard disk reprocessing picture. The largest discrepancy to date was recently reported in Mrk 335, where UV/optical lags are up to 12 times longer than expected. Here, we perform a frequency-resolved time lag analysis of Mrk 335, using Gaussian processes to account for irregular sampling. For the first time, we compare the Fourier frequency-resolved lags directly to those computed using the popular interpolated cross-correlation function method applied to both the original and detrended light curves. We show that the anticipated disk reverberation lags are recovered by the Fourier lags when zeroing in on the short-timescale variability. This suggests that a separate variability component is present on long timescales. If this separate component is modeled as reverberation from another region beyond the accretion disk, we constrain a size scale of roughly 15 lt-days from the central black hole. This is consistent with the size of the broad-line region inferred from Hβreverberation lags. We also find tentative evidence for a soft X-ray lag, which we propose may be due to light travel time delays between the hard X-ray corona and distant photoionized gas that dominates the soft X-ray spectrum below 2 keV. 
    more » « less
  5. Abstract X-ray reverberation mapping is a powerful technique for probing the innermost accretion disk, whereas continuum reverberation mapping in the UV, optical, and infrared (UVOIR) reveals reprocessing by the rest of the accretion disk and broad-line region (BLR). We present the time lags of Mrk 817 as a function of temporal frequency measured from 14 months of high-cadence monitoring from Swift and ground-based telescopes, in addition to an XMM-Newton observation, as part of the AGN STORM 2 campaign. The XMM-Newton lags reveal the first detection of a soft lag in this source, consistent with reverberation from the innermost accretion flow. These results mark the first simultaneous measurement of X-ray reverberation and UVOIR disk reprocessing lags—effectively allowing us to map the entire accretion disk surrounding the black hole. Similar to previous continuum reverberation mapping campaigns, the UVOIR time lags arising at low temporal frequencies are longer than those expected from standard disk reprocessing by a factor of 2–3. The lags agree with the anticipated disk reverberation lags when isolating short-timescale variability, namely timescales shorter than the Hβlag. Modeling the lags requires additional reprocessing constrained at a radius consistent with the BLR size scale inferred from contemporaneous Hβ-lag measurements. When we divide the campaign light curves, the UVOIR lags show substantial variations, with longer lags measured when obscuration from an ionized outflow is greatest. We suggest that, when the obscurer is strongest, reprocessing by the BLR elongates the lags most significantly. As the wind weakens, the lags are dominated by shorter accretion disk lags. 
    more » « less