skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supplemental Material for Morey et al. (2024)
This is the Supporting Information for Morey et al., (2024). Includes: model results from R1, R2, R3, and R4; files that contain measured boulder locations and sizes; the equilibrium longitudinal profile over which all runs were made; Table S2, which contains individual boulder measurements at 106 bars in the modeled domain of the Yarlung-Siang River.  more » « less
Award ID(s):
2220337
PAR ID:
10530581
Author(s) / Creator(s):
Publisher / Repository:
Zenodo
Date Published:
Edition / Version:
1
Subject(s) / Keyword(s):
Geomorphology
Format(s):
Medium: X Size: 30MB Other: xls, md, npy
Size(s):
30MB
Location:
Seattle, WA
Right(s):
Creative Commons Attribution 4.0 International
Institution:
University of Washington
Sponsoring Org:
National Science Foundation
More Like this
  1. Although rates of fluvial incision across the Colorado Plateau are known reasonably well, rate variability through time and its controlling processes are still poorly understood. We used boulder armored benches from the Teasdale-Torrey lowlands reach of the Fremont River in the northwestern Colorado Plateau (Utah, USA) as temporal markers to determine regional incision rates and explore controls on rate variability. Bench gravels are sourced from Tertiary volcanic rocks capping nearby Boulder and Thousand Lakes Mountains. The sedimentology of bench deposits suggests that most form from mass movement with later fluvial reworking. Volcanic boulders are tougher than the local sedimentary bedrock, which promotes boulder armoring and topographic inversion. Thirty-seven boulder cosmogenic 3He exposure ages from 11 different benches range from >600 ka to ca. 100 ka. Soil carbonate stages from two benches are in good agreement with surface exposure ages. Averaged Fremont River and tributary incision rates determined from bench exposure ages are 32% faster for tributaries off of Thousand Lakes Mountain (0.41 m/k.y.) than tributaries off of Boulder Mountain (0.28 m/k.y.). This difference in incision rate may be due to Laramideage structures limiting incision for the tributaries that drain Boulder Mountain and extensive Pleistocene ice caps on Boulder Mountain creating a wider and thicker boulder armor slowing incision. 
    more » « less
  2. Abstract Infrequent, large‐magnitude discharge (>106 m3/s) outburst floods—megafloods—can play a major role in landscape evolution. Prehistoric glacial lake outburst megafloods transported and deposited large boulders (≥4 m), yet few studies consider their potential lasting impact on river processes and form. We use a numerical model, constrained by observed boulder size distributions, to investigate the fluvial response to boulder deposition by megaflooding in the Yarlung‐Siang River, eastern Himalaya. Results show that boulder deposition changes local channel steepness (ksn) up to ∼180% compared to simulations without boulder bars, introducing >100 meter‐scale knickpoints to the channel that can be sustained for >20 kyr. Simulations demonstrate that deposition of boulders in a single megaflood can have a greater influence onksnthan another common source of fluvial boulders: incision‐rate‐dependent delivery of boulders from hillslopes. Through widespread boulder deposition, megafloods leave a lasting legacy of channel disequilibrium that compounds over multiple floods and persists for millennia. 
    more » « less
  3. Feedbacks between surface and deep Earth processes in collisional mountain belts depend on how erosion and topographic relief vary in space and time. One outstanding unknown lies in how rock strength influences bedrock river morphology and thus mountain relief. Here, we quantify boulder cover and channel morphology using uncrewed aerial vehicle surveys along 30 kilometers of bedrock-bound river corridors throughout the Taiwan Central Range where regional gradients in rock properties relate to tectonic history. We find that boulder size systematically increases with increasing metamorphic grade and depth of exhumation. Boulder size correlates with reach-scale channel steepness but does not explain observations of highly variable channel width. Transport thresholds indicate that rivers are adjusted to mobilize boulders and are well in excess of the threshold to transport gravel and cobbles, as previously assumed. The linkage between metamorphic history, boulder size, and channel steepness reveals how rock properties can influence feedbacks between tectonics and topography throughout the life span of a mountain range. 
    more » « less
  4. We analyzed meteorological conditions that occurred during the December 2021 Boulder, Colorado, downslope windstorm. This event is of particular interest due to the ignition and spread of the Marshall Fire, which quickly became the most destructive wildfire in Colorado history. Observations indicated a rapid onset of fast winds with gusts as high as 51 m/s that generally remained confined to the east-facing slopes and foothills of the Rockies, similar to previous Boulder windstorms. After about 12 h, the windstorm shifted into a second, less intense phase. Midtropospheric winds above northwestern Colorado weakened prior to the onset of strong surface winds and the event strength started waning as stronger winds moved back into the area. Forecasts from NOAA high-resolution operational models initialized more than a few hours prior to windstorm onset did not simulate the start time, development rate and/or maximum strength of the windstorm correctly, and day-ahead runs even failed to develop strong downslope windstorms at all. Idealized modeling confirmed that predictability was limited by errors on the synoptic scale affecting the midtropospheric wind conditions representing the Boulder windstorm’s inflow environment. Gust forecasts for this event were critically evaluated. 
    more » « less
  5. Abstract Hemosporidian parasite communities are broadly similar in Boulder County, Colorado, between two common songbirds––the Black-capped Chickadee (Poecile atricapillus) and Mountain Chickadee (Poecile gambeli). However, Mountain Chickadees appear more likely to be infected with Plasmodium and potentially experience higher infection burdens with Leucocytozoon in contrast to Black-capped Chickadees. We found that elevation change (and associated ecology) drives the distributions of these parasite genera. For Boulder County chickadees, environmental factors play a more important role in structuring hemosporidian communities than host evolutionary differences. However, evolutionary differences are likely key to shaping the probability of infection, infection burden, and whether an infection remains detectable over time. We found that for recaptured birds, their infection status (i.e. presence or absence of detectable parasite infection) tends to remain consistent across capture periods. We sampled 235 chickadees between 2017 and 2021 across a ~1,500-m elevation gradient from low elevation (i.e. the city of Boulder) to comparatively high elevation (i.e. the CU Boulder Mountain Research Station). It is unknown whether long-term hemosporidian abundance trends have changed over time in our sampling region. However, we ask whether potentially disparate patterns of Plasmodium susceptibility and Leucocytozoon infection burden could be playing a role in the negative population trends of Mountain Chickadees. 
    more » « less