null
(Ed.)
Tracking entities throughout a procedure de- scribed in a text is challenging due to the dy- namic nature of the world described in the pro- cess. Firstly, we propose to formulate this task as a question answering problem. This en- ables us to use pre-trained transformer-based language models on other QA benchmarks by adapting those to the procedural text un- derstanding. Secondly, since the transformer- based language models cannot encode the flow of events by themselves, we propose a Time- Stamped Language Model (TSLM model) to encode event information in LMs architec- ture by introducing the timestamp encoding. Our model evaluated on the Propara dataset shows improvements on the published state- of-the-art results with a 3.1% increase in F1 score. Moreover, our model yields better re- sults on the location prediction task on the NPN-Cooking dataset. This result indicates that our approach is effective for procedural text understanding in general.
more »
« less
An official website of the United States government

