skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Indigo3: A Parallel Graph Analytics Benchmark Suite for Exploring Implementation Styles and Common Bugs
Graph analytics codes are widely used and tend to exhibit input-dependent behavior, making them particularly interesting for software verification and validation. This paper presents Indigo3, a labeled benchmark suite based on 7 graph algorithms that are implemented in different styles, including versions with deliberately planted bugs. We systematically combine 13 sets of implementation styles and 15 common bug types to create the 41,790 CUDA, OpenMP, and parallel C programs in the suite. Each code is labeled with the styles and bugs it incorporates. We used 4 subsets of Indigo3 to test 5 program-verification tools. Our results show that the tools perform quite differently across the bug types and implementation styles, have distinct strengths and weaknesses, and generally struggle with graph codes. We discuss the styles and bugs that tend to be the most challenging as well as the programming patterns that yield false positives.  more » « less
Award ID(s):
1955367
PAR ID:
10530938
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM Transactions on Parallel Computing
Date Published:
Journal Name:
ACM Transactions on Parallel Computing
ISSN:
2329-4949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Irregular programs are found in many domains and tend to exhibit input-dependent control flow and memory accesses. This paper introduces the Indigo suite of important irregular parallel code patterns for testing verification and other tools. We studied many irregular CPU and GPU programs and extracted the key code patterns. Then, we methodically built variations of these patterns to alter the control-flow and memory-access behavior and/or introduce bugs, yielding the thousands of OpenMP and CUDA microbenchmarks in the suite. Indigo includes a set of generators to systematically create an unbounded number of inputs for each microbenchmark, which is essential to exercise the wide range of possible behaviors of input-dependent codes. To manage the millions of code and input combinations, Indigo provides the flexibility to generate user-defined subsets of the suite. Experiments with a subset of buggy and bug-free codes illustrate that irregular programs pose a significant challenge to both static and dynamic program verification tools. Moreover, such tools can perform quite differently across code patterns that contain the same bug. 
    more » « less
  2. Deep learning has gained substantial popularity in recent years. Developers mainly rely on libraries and tools to add deep learning capabilities to their software. What kinds of bugs are frequently found in such software? What are the root causes of such bugs? What impacts do such bugs have? Which stages of deep learning pipeline are more bug prone? Are there any antipatterns? Understanding such characteristics of bugs in deep learning software has the potential to foster the development of better deep learning platforms, debugging mechanisms, development practices, and encourage the development of analysis and verification frameworks. Therefore, we study 2716 high-quality posts from Stack Overflow and 500 bug fix commits from Github about five popular deep learning libraries Caffe, Keras, Tensorflow, Theano, and Torch to understand the types of bugs, root causes of bugs, impacts of bugs, bug-prone stage of deep learning pipeline as well as whether there are some common antipatterns found in this buggy software. The key findings of our study include: data bug and logic bug are the most severe bug types in deep learning software appearing more than 48% of the times, major root causes of these bugs are Incorrect Model Parameter (IPS) and Structural Inefficiency (SI) showing up more than 43% of the times.We have also found that the bugs in the usage of deep learning libraries have some common antipatterns. 
    more » « less
  3. In spite of decades of research in bug detection tools, there is a surprising dearth of ground-truth corpora that can be used to evaluate the efficacy of such tools. Recently, systems such as LAVA and EvilCoder have been proposed to automatically inject bugs into software to quickly generate large bug corpora, but the bugs created so far differ from naturally occurring bugs in a number of ways. In this work, we propose a new automated bug injection system, Apocalypse, that uses formal techniques—symbolic execution, constraint-based program synthesis and model counting—to automatically inject fair (can potentially be discovered by current bug-detection tools), deep (requiring a long sequence of dependencies to be satisfied to fire), uncorrelated (each bug behaving independent of others), reproducible (a trigger input being available) and rare (can be triggered by only a few program inputs) bugs in large software code bases. In our evaluation, we inject bugs into thirty Coreutils programs as well as the TCAS test suite. We find that bugs synthesized by Apocalypse are highly realistic under a variety of metrics, that they do not favor a particular bug-finding strategy (unlike bugs produced by LAVA), and that they are more difficult to find than manually injected bugs, requiring up around 240× more tests to discover with a state-of-the-art symbolic execution tool. 
    more » « less
  4. Static analysis tools have demonstrated effectiveness at finding bugs in real world code. Such tools are increasingly widely adopted to improve software quality in practice. Automated Program Repair (APR) has the potential to further cut down on the cost of improving software quality. However, there is a disconnect between these effective bug-finding tools and APR. Recent advances in APR rely on test cases, making them inapplicable to newly discovered bugs or bugs difficult to test for deterministically (like memory leaks). Additionally, the quality of patches generated to satisfy a test suite is a key challenge. We address these challenges by adapting advances in practical static analysis and verification techniques to enable a new technique that finds and then accurately fixes real bugs without test cases. We present a new automated program repair technique using Separation Logic. At a high-level, our technique reasons over semantic effects of existing program fragments to fix faults related to general pointer safety properties: resource leaks, memory leaks, and null dereferences. The procedure automatically translates identified fragments into source-level patches, and verifies patch correctness with respect to reported faults. In this work we conduct the largest study of automatically fixing undiscovered bugs in real-world code to date. We demonstrate our approach by correctly fixing 55 bugs, including 11 previously undiscovered bugs, in 11 real-world projects. 
    more » « less
  5. Bug tracking systems, which help to track the reported software bugs, have been widely used in software development and maintenance. In these systems, recognizing relevant source files among a large number of source files for a given bug report is a time-consuming and labor-intensive task for software developers. To tackle this problem, information retrieval methods have been widely used to capture either the textual similarities or the semantic similarities between bug reports and source files. However, these two types of similarities are usually considered separately and the historical bug fixings are largely ignored by the existing methods. In this paper, we propose a supervised topic modeling method (STMLOCATOR) for automatically locating the relevant source files for a given bug report. In particular, the proposed model is built upon three key observations. First, supervised modeling can effectively make use of the existing fixing histories. Second, certain words in bug reports tend to appear multiple times in their relevant source files. Third, longer source files tend to have more bugs. By integrating the above three observations, the proposed STMLOCATOR utilizes historical fixings in a supervised way and learns both the textual similarities and semantic similarities between bug reports and source files. We further consider a special type of bug reports with stack-traces in bug reports, and propose a variant of STMLOCATOR to tailor for such bug reports. Experimental evaluations on three real data sets demonstrate that the proposed STMLOCATOR can achieve up to 23.6% improvement in terms of prediction accuracy over its best competitors, and scales linearly with the size of the data. Moreover, the proposed variant further improves STMLOCATOR by up to 76.2% on those bug reports with stack-traces. 
    more » « less