Near infrared and infrared multi-photon imaging through or inside bone is an emerging field that promises to help answer many biological questions that require minimally invasive intravital imaging. Neuroscience researchers especially have begun to take advantage of long wavelength imaging to overcome multiple scattering and image deep inside the brain through intact or partially intact bone. Since the murine model is used in many biological experiments, here we investigate the optical aberrations caused by mouse cranial bone, and their effects on light propagation. We previously developed a ray tracing model that uses second harmonic generation in collagen fibers of bone to estimate the refractive index structure of the sample. This technique is able to rapidly provide initial information for a closed loop adaptive optics system. However, the ray tracing method does not account for refraction or scattering. Here, we extend our work to investigate the wavefront aberrations in bone using a full electromagnetic model. We used Finite-Difference Time-Domain modeling of light propagation in refractive index bone datasets acquired with second harmonic generation imaging. In this paper we show modeled wavefront phase from different originating points across the field of view.
more »
« less
Temporal and spectral multiplexing for EUV multibeam ptychography with a high harmonic light source
We demonstrate temporally multiplexed multibeam ptychography implemented for the first time in the EUV, by using a high harmonic based light source. This allows for simultaneous imaging of different sample areas, or of the same area at different times or incidence angles. Furthermore, we show that this technique is compatible with wavelength multiplexing for multibeam spectroscopic imaging, taking full advantage of the temporal and spectral characteristics of high harmonic light sources. This technique enables increased data throughput using a simple experimental implementation and with high photon efficiency.
more »
« less
- Award ID(s):
- 1734006
- PAR ID:
- 10531112
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 30
- Issue:
- 17
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 30331
- Size(s):
- Article No. 30331
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Reduced light is one of the primary threats to seagrass meadows in the coming decades, with reduced light reaching the benthos due to eutrophication. We assessed a multispectral photography technique using near‐infrared photography to estimate chlorophyll content in the seagrassZostera marina. Using near‐infrared and red wavelength cameras in the lab environment, we measured normalized difference vegetation index (NDVI) in photographs of sampled seagrass leaves. In samples taken from three different environments, we found a positive correlation between lab‐based NDVI and chlorophyll content, with variation attributable to leaf age. In samples grown under different light conditions, we found high levels of NDVI associated with lower light possibly due to seagrass photoacclimation. This method may be used in addition to existing seagrass monitoring methods to collect data on seagrass photic status and estimate chlorophyll content, and detect possible light limitation due to turbidity or high epibiota cover. The relatively low cost and time required for this method may make it useful where researchers are already collecting and imaging seagrass as part of routine monitoring.more » « less
-
Optical imaging through scattering media has long been a challenge. Many approaches have been developed for focusing light or imaging objects through scattering media, but usually, they are either invasive, limited to stationary or slow-moving media, or require high-resolution cameras and complex algorithms to retrieve the images. By utilizing spatial–temporal encoded patterns (STEPs), we introduce a technique for the computation of imaging that overcomes these restrictions. With a single-pixel photodetector, we demonstrate non-invasive imaging through scattering media. This technique is insensitive to the motion of the media. Furthermore, we demonstrate that our image reconstruction algorithm is much more efficient than correlation-based algorithms for single-pixel imaging, which may allow fast imaging for applications with limited computing resources.more » « less
-
Quantum ghost imaging (QGI) leverages correlations between entangled photon pairs to reconstruct an image using light that has never physically interacted with an object. Despite extensive research interest, this technique has long been hindered by slow acquisition speeds, due to the use of raster-scanned detectors or the slow response of intensified cameras. Here, we utilize a single-photon-sensitive time-stamping camera to perform QGI at ultra-low-light levels with rapid data acquisition and processing times, achieving high-resolution and high-contrast images in under 1 min. Our work addresses the trade-off between image quality, optical power, data acquisition time, and data processing time in QGI, paving the way for practical applications in biomedical and quantum-secured imaging.more » « less
-
Intense few-cycle laser pulses have a breadth of applications in high energy density science, including particle acceleration and x-ray generation. Multi-amplifier laser system pulses have durations of tens of femtoseconds or longer. To achieve high intensities at the single-cycle limit, a robust and efficient post-compression scheme is required. We demonstrate a staged compression technique using self-phase modulation in thin dielectric media, in which few-cycle pulses can be produced. The few-cycle pulse is then used to generate extreme ultravoilet light via high harmonic generation at strong field intensities and to generate MeV electron beams via laser solid interactions at relativistic intensities.more » « less
An official website of the United States government
