We present a compact heterodyne laser interferometer developed for high-sensitivity displacement sensing applications. This interferometer consists of customized prisms and wave plates assembled as a quasi-monolithic unit to realize a miniaturized system. The interferometer design adopts a common-mode rejection scheme to provide a high rejection ratio to common environmental noise. Experimental tests in vacuum show a displacement sensitivity level of at and as low as above . The prototype unit is in size and weighs , allowing subsequent integration in compact systems.
more »
« less
Nano-scale ferroelectric domain differentiation in periodically poled lithium niobate with auger electron spectroscopy
A new method for characterizing lithium niobate +/-Z ferroelectric polarization domains using Auger electron spectroscopy (AES) is presented. The domains of periodically poled samples are found to be differentiable using the peak amplitude of the Auger oxygen KLL transition, with -Z domains having a larger peak-amplitude as compared to +Z domains. The peak amplitude separation between domains is found to be dependent on the primary beam current, necessitating a balance between the insulating samples charging under the primary beam and achieving sufficient signal to noise in amplitude separation. AES amplitude-based domain characterization is demonstrated for fields of view (FOV) ranging from 1 m to 78 m. Domain spatial resolution of 91 nm is demonstrated at 1 m FOV.
more »
« less
- Award ID(s):
- 1710128
- PAR ID:
- 10531217
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Continuum
- Volume:
- 1
- Issue:
- 4
- ISSN:
- 2770-0208
- Format(s):
- Medium: X Size: Article No. 649
- Size(s):
- Article No. 649
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents a calibration method for a microscopic structured light system with an extended depth of field (DOF). We first employed the focal sweep technique to achieve large enough depth measurement range, and then developed a computational framework to alleviate the impact of phase errors caused by the standard off-the-shelf calibration target (black circles with a white background). Specifically, we developed a polynomial interpolation algorithm to correct phase errors near the black circles to obtain more accurate phase maps for projector feature points determination. Experimental results indicate that the proposed method can achieve a measurement accuracy of approximately 1.0 m for a measurement volume of approximately 2,500 m (W) × 2,000 m (H) × 500 m (D).more » « less
-
We show that for spherical particles greater than ca. 5 µm, the differential scattering cross section is only weakly dependent on the real and imaginary parts of the refractive index ( ) when integrated over angle ranges near and , respectively. With this knowledge, we set up an arrangement that collects scattered light in the ranges , , and . The weak functionality on refractive index for the first two angle ranges simplifies the inversion of scattering to the particle properties of diameter and the real and imaginary refractive indices. Our setup also uses a diamond-shaped incident beam profile that allows us to determine when a particle went through the exact center of the beam. Application of our setup to droplets of an absorbing liquid successfully determined the diameter and complex refractive index to accuracies ranging from a few to ten percent. Comparisons to simulated data derived from the Mie equations yielded similar results.more » « less
-
The mid-IR spectroscopic properties of doped low-phonon and crystals grown by the Bridgman technique have been investigated. Using optical excitations at and , both crystals exhibited IR emissions at , , , and at room temperature. The mid-IR emission at 4.5 µm, originating from the transition, showed a long emission lifetime of for doped , whereas doped exhibited a shorter lifetime of . The measured emission lifetimes of the state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the transition in doped and were determined to be and , respectively. The results of Judd–Ofelt analysis are presented and discussed.more » « less
-
Cross-platform observing systems are requisite to capturing the temporal and spatial dynamics of particles in the ocean. We present simultaneous observations of bulk optical properties, including the particulate beam attenuation ( ) and backscattering ( ) coefficients, and particle size distributions collected in the North Pacific Subtropical Gyre. Clear and coherent diel cycles are observed in all bulk and size-fractionated optical proxies for particle biomass. We show evidence linking diurnal increases in and to daytime particle growth and division of cells, with particles driving the daily cycle of particle production and loss within the mixed layer. Flow cytometry data reveal the nitrogen-fixing cyanobacteriumCrocosphaera( ) to be an important driver of at the time of sampling, whereasProchlorococcusdynamics ( ) were essential to reproducing temporal variability in . This study is a step towards improved characterization of the particle size range represented byin situbulk optical properties and a better understanding of the mechanisms that drive variability in particle production in the oligotrophic open ocean.more » « less
An official website of the United States government
