skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Determination of size and complex index of refraction of single particles with elastic light scattering
We show that for spherical particles greater than ca. 5 µm, the differential scattering cross section is only weakly dependent on the real and imaginary parts of the refractive index ( m = n + i κ<#comment/> ) when integrated over angle ranges near 37 ±<#comment/> 5 ∘<#comment/> and 115 ±<#comment/> 5 ∘<#comment/> , respectively. With this knowledge, we set up an arrangement that collects scattered light in the ranges 37 ±<#comment/> 5 ∘<#comment/> , 115 ±<#comment/> 5 ∘<#comment/> , and 80 ±<#comment/> 5 ∘<#comment/> . The weak functionality on refractive index for the first two angle ranges simplifies the inversion of scattering to the particle properties of diameter and the real and imaginary refractive indices. Our setup also uses a diamond-shaped incident beam profile that allows us to determine when a particle went through the exact center of the beam. Application of our setup to droplets of an absorbing liquid successfully determined the diameter and complex refractive index to accuracies ranging from a few to ten percent. Comparisons to simulated data derived from the Mie equations yielded similar results.  more » « less
Award ID(s):
1649783
PAR ID:
10209803
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
Volume:
60
Issue:
3
ISSN:
1559-128X; APOPAI
Format(s):
Medium: X Size: Article No. 600
Size(s):
Article No. 600
Sponsoring Org:
National Science Foundation
More Like this
  1. Metasurfaces with dynamic optical performance have the potential to enable a broad range of applications. We computationally investigate the potential of dielectric Huygens metasurfaces, supporting both electric and magnetic dipole resonances, as a candidate platform for dynamic tuning. The asymmetric response of the two dipole resonances to changes in geometric and material parameters, and the potential for separate control of amplitude and phase, is analyzed. A review of dynamic materials, and their promise and limitations for use in dynamic Huygens metasurfaces, is discussed. Vanadium dioxide ( V O 2 ) is recognized as a singularly interesting material, due to its variable refractive index and optical absorption in response to several stimuli. Transmitted phase modulation of ±<#comment/> π<#comment/> is computationally demonstrated as a function of decaying resonance utilizing only the first 5% of the insulator-metal transition, corresponding to a temperature change of <<#comment/> 10 ∘<#comment/> C . As another case study utilizing asymmetric resonance tuning in response to changing incidence angle, phase modulation ( 2 π<#comment/> range for reflected light and ><#comment/> 1.5 π<#comment/> for transmitted light) and amplitude modulation (from R = 1 to T = 1 ) are demonstrated using a simple silicon metasurface with varying incident angle within a range of ∼<#comment/> 15 ∘<#comment/> on two axes. A promising implementation within a micro-electromechanical system (MEMS)-based spatial light modulator, similar to conventional digital micromirror devices, is discussed. 
    more » « less
  2. Amorphous tantala ( T a 2 O 5 ) thin films were deposited by reactive ion beam sputtering with simultaneous low energy assist A r + or A r + / O 2 + bombardment. Under the conditions of the experiment, the as-deposited thin films are amorphous and stoichiometric. The refractive index and optical band gap of thin films remain unchanged by ion bombardment. Around 20% improvement in room temperature mechanical loss and 60% decrease in absorption loss are found in samples bombarded with 100-eV A r + . A detrimental influence from low energy O 2 + bombardment on absorption loss and mechanical loss is observed. Low energy A r + bombardment removes excess oxygen point defects, while O 2 + bombardment introduces defects into the tantala films. 
    more » « less
  3. The mid-IR spectroscopic properties of E r 3 + doped low-phonon C s C d C l 3 and C s P b C l 3 crystals grown by the Bridgman technique have been investigated. Using optical excitations at ∼<#comment/> 800 n m and ∼<#comment/> 660 n m , both crystals exhibited IR emissions at ∼<#comment/> 1.55 , ∼<#comment/> 2.75 , ∼<#comment/> 3.5 , and ∼<#comment/> 4.5 µ<#comment/> m at room temperature. The mid-IR emission at 4.5 µm, originating from the 4 I 9 / 2 →<#comment/> 4 I 11 / 2 transition, showed a long emission lifetime of ∼<#comment/> 11.6 m s for E r 3 + doped C s C d C l 3 , whereas E r 3 + doped C s P b C l 3 exhibited a shorter lifetime of ∼<#comment/> 1.8 m s . The measured emission lifetimes of the 4 I 9 / 2 state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the 4 I 9 / 2 →<#comment/> 4 I 11 / 2 transition in E r 3 + doped C s C d C l 3 and C s P b C l 3 were determined to be ∼<#comment/> 0.14 ×<#comment/> 10 −<#comment/> 20 c m 2 and ∼<#comment/> 0.41 ×<#comment/> 10 −<#comment/> 20 c m 2 , respectively. The results of Judd–Ofelt analysis are presented and discussed. 
    more » « less
  4. The scattered intensity from large spheres with a real part of the refractive index of n = 1.33 , 1.5 , 2.0 is investigated as the radius R and an imaginary part of the refractive index κ<#comment/> are varied. It is shown that the product of κ<#comment/> and the size parameter k R , κ<#comment/> kR , is a universal parameter describing the quenching of the refraction phenomenon of the scattered light: the refraction hump, the generalized rainbows, and the glory. The physical reason for this is that κ<#comment/> kR is the inverse of the relative skin depth of light penetration into the sphere, which is demonstrated by calculations of the internal fields that darken universally as κ<#comment/> kR increases. 
    more » « less
  5. We report on spectroscopic measurements on the 4 f 7 6 s 2 8 S 7 / 2 ∘<#comment/> →<#comment/> 4 f 7 ( 8 S ∘<#comment/> ) 6 s 6 p ( 1 P ∘<#comment/> ) 8 P 9 / 2 transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the 6 s 6 p ( 1 P ∘<#comment/> ) 8 P 9 / 2 state were found to be A ( 151 ) = −<#comment/> 228.84 ( 2 ) M H z , B ( 151 ) = 226.9 ( 5 ) M H z and A ( 153 ) = −<#comment/> 101.87 ( 6 ) M H z , B ( 153 ) = 575.4 ( 1.5 ) M H z , which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results. 
    more » « less