skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AI4EIC Hackathon: PID with the ePIC dRICH
The inaugural AI4EIC Hackathon unfolded as a high-point satellite event during the second AI4EIC Workshop at William & Mary. The workshop itself boasted over two hundred participants in a hybrid format and delved into the myriad applications of Artificial Intelligence and Machine Learning (AI/ML) for the Electron-Ion Collider (EIC). This workshop aimed to catalyze advancements in AI/ML with applications ranging from advancements in accelerator and detector technologies—highlighted by the ongoing work on the ePIC detector and potential development of a second detector for the EIC—to data analytics, reconstruction, and particle identification, as well as the synergies between theoretical and experimental research. Complementing the technical agenda was an enriched educational outreach program that featured tutorials from leading AI/ML experts representing academia, national laboratories, and industry. The hackathon, held on the final day, showcased international participation with ten teams from around the globe. Each team, comprising up to four members, focused on the dual-radiator Ring Imaging Cherenkov (dRICH) detector, an integral part of the particle identification (PID) system in ePIC. The data for the hackathon were generated using the ePIC software suite. While the hackathon presented questions of increasing complexity, its challenges were designed with deliberate simplifications to serve as a preliminary step toward the integration of machine learning and deep learning techniques in PID with the dRICH detector. This article encapsulates the key findings and insights gained from this unique experience.  more » « less
Award ID(s):
2012430 2309976
PAR ID:
10531352
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Editor(s):
De_Vita, R; Espinal, X; Laycock, P; Shadura, O
Publisher / Repository:
EOPSciences
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
295
ISSN:
2100-014X
Page Range / eLocation ID:
08004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Electron-Ion Collider (EIC), a state-of-the-art facility for studying the strong force, is expected to begin commissioning its first experiments in 2028. This is an opportune time for artificial intelligence (AI) to be included from the start at this facility and in all phases that lead up to the experiments. The second annual workshop organized by the AI4EIC working group, which recently took place, centered on exploring all current and prospective application areas of AI for the EIC. This workshop is not only beneficial for the EIC, but also provides valuable insights for the newly established ePIC collaboration at EIC. This paper summarizes the different activities and R&D projects covered across the sessions of the workshop and provides an overview of the goals, approaches and strategies regarding AI/ML in the EIC community, as well as cutting-edge techniques currently studied in other experiments. 
    more » « less
  2. Abstract Artificial Intelligence is poised to transform the design of complex, large-scale detectors like ePIC at the future Electron Ion Collider. Featuring a central detector with additional detecting systems in the far forward and far backward regions, the ePIC experiment incorporates numerous design parameters and objectives, including performance, physics reach, and cost, constrained by mechanical and geometric limits.This project aims to develop a scalable, distributed AI-assisted detector design for the EIC (AID(2)E), employing state-of-the-art multiobjective optimization to tackle complex designs. Supported by the ePIC software stack and usingGeant4simulations, our approach benefits from transparent parameterization and advanced AI features.The workflow leverages the PanDA and iDDS systems, used in major experiments such as ATLAS at CERN LHC, the Rubin Observatory, and sPHENIX at RHIC, to manage the compute intensive demands of ePIC detector simulations. Tailored enhancements to the PanDA system focus on usability, scalability, automation, and monitoring.Ultimately, this project aims to establish a robust design capability, apply a distributed AI-assisted workflow to the ePIC detector, and extend its applications to the design of the second detector (Detector-2) in the EIC, as well as to calibration and alignment tasks. Additionally, we are developing advanced data science tools to efficiently navigate the complex, multidimensional trade-offs identified through this optimization process. 
    more » « less
  3. Abstract The successful realization of the EIC scientific program requires the design and construction of high-performance particle detectors. Recent developments in the field of scientific computing and increased availability of high performance computing resources have made it possible to perform optimization of multi-parameter designs, even when the latter require longer computational times (for example simulations of particle interactions with matter). Procedures involving machine-assisted techniques used to inform the design decision have seen a considerable growth in popularity among the EIC detector community. Having already been realized for tracking and RICH PID detectors, it has a potential application in calorimetry designs. A SciGlass barrel calorimeter originally designed for EIC Detector-1 has a semi-projective geometry that allows for non-trivial performance gains, but also poses special challenges in the way of effective exploration of the design space while satisfying the available space and the cell dimension constraints together with the full detector acceptance requirement. This talk will cover specific approaches taken to perform this detector design optimization. 
    more » « less
  4. null (Ed.)
    Abstract Machine learning and artificial intelligence (ML/AI) methods have been used successfully in recent years to solve problems in many areas, including image recognition, unsupervised and supervised classification, game-playing, system identification and prediction, and autonomous vehicle control. Data-driven machine learning methods have also been applied to fusion energy research for over 2 decades, including significant advances in the areas of disruption prediction, surrogate model generation, and experimental planning. The advent of powerful and dedicated computers specialized for large-scale parallel computation, as well as advances in statistical inference algorithms, have greatly enhanced the capabilities of these computational approaches to extract scientific knowledge and bridge gaps between theoretical models and practical implementations. Large-scale commercial success of various ML/AI applications in recent years, including robotics, industrial processes, online image recognition, financial system prediction, and autonomous vehicles, have further demonstrated the potential for data-driven methods to produce dramatic transformations in many fields. These advances, along with the urgency of need to bridge key gaps in knowledge for design and operation of reactors such as ITER, have driven planned expansion of efforts in ML/AI within the US government and around the world. The Department of Energy (DOE) Office of Science programs in Fusion Energy Sciences (FES) and Advanced Scientific Computing Research (ASCR) have organized several activities to identify best strategies and approaches for applying ML/AI methods to fusion energy research. This paper describes the results of a joint FES/ASCR DOE-sponsored Research Needs Workshop on Advancing Fusion with Machine Learning, held April 30–May 2, 2019, in Gaithersburg, MD (full report available at https://science.osti.gov/-/media/fes/pdf/workshop-reports/FES_ASCR_Machine_Learning_Report.pdf ). The workshop drew on broad representation from both FES and ASCR scientific communities, and identified seven Priority Research Opportunities (PRO’s) with high potential for advancing fusion energy. In addition to the PRO topics themselves, the workshop identified research guidelines to maximize the effectiveness of ML/AI methods in fusion energy science, which include focusing on uncertainty quantification, methods for quantifying regions of validity of models and algorithms, and applying highly integrated teams of ML/AI mathematicians, computer scientists, and fusion energy scientists with domain expertise in the relevant areas. 
    more » « less
  5. The EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been designed to address the full scope of the proposed Electron Ion Collider (EIC) physics program as presented by the National Academy of Science and provide a deeper understanding of the quark–gluon structure of matter. To accomplish this, the ECCE detector offers nearly acceptance and energy coverage along with excellent tracking and particle identification. The ECCE detector was designed to be built within the budget envelope set out by the EIC project while simultaneously managing cost and schedule risks. This detector concept has been selected to be the basis for the EIC project detector. 
    more » « less