We introduce VOCALExplore, a system designed to support users in building domain-specific models over video datasets. VOCALExplore supports interactive labeling sessions and trains models using user-supplied labels. VOCALExplore maximizes model quality by automatically deciding how to select samples based on observed skew in the collected labels. It also selects the optimal video representations to use when training models by casting feature selection as a rising bandit problem. Finally, VOCALExplore implements optimizations to achieve low latency without sacrificing model performance. We demonstrate that VOCALExplore achieves close to the best possible model quality given candidate acquisition functions and feature extractors, and it does so with low visible latency (~1 second per iteration) and no expensive preprocessing.
more » « less- Award ID(s):
- 2211133
- PAR ID:
- 10531466
- Publisher / Repository:
- VLDB Endowment
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 16
- Issue:
- 13
- ISSN:
- 2150-8097
- Page Range / eLocation ID:
- 4188 to 4201
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Low-latency is a critical user Quality-of-Experience (QoE) metric for live video streaming. It poses significant challenges for streaming over the Internet. In this paper, we explore the design space of low-latency live video streaming by developing dynamic models and optimal control strategies. We further develop practical live video streaming algorithms within the Model Predictive Control (MPC) framework, namely MPC-Live, to maximize user QoE by adapting the video bitrate while maintaining low end-to-end video latency in dynamic network environment. Through extensive experiments driven by real network traces, we demonstrate that our live video streaming algorithms can improve the performance dramatically within latency range of two to five seconds.more » « less
-
Super-resolution (SR) is a well-studied technique for reconstructing high-resolution (HR) images from low-resolution (LR) ones. SR holds great promise for video streaming since an LR video segment can be transmitted from the video server to the client that then reconstructs the HR version using SR, resulting in a significant reduction in network bandwidth. However, SR is seldom used in practice for real-time video streaming, because the computational overhead of frame reconstruction results in large latency and low frame rate. To reduce the computational overhead and make SR practical, we propose a deep-learning-based SR method called Fo veated Cas caded Video Super Resolution (focas). focas relies on the fact that human eyes only have high acuity in a tiny central foveal region of the retina. focas uses more neural network blocks in the foveal region to provide higher video quality, while using fewer blocks in the periphery as lower quality is sufficient. To optimize the computational resources and reduce reconstruction latency, focas formulates and solves a convex optimization problem to decide the number of neural network blocks to use in each region of the frame. Using extensive experiments, we show that focas reduces the latency by 50%-70% while maintaining comparable visual quality as traditional (non-foveated) SR. Further, focas provides a 12-16x reduction in the client-to-server network bandwidth in comparison with sending the full HR video segments.more » « less
-
null (Ed.)As video tra!c continues to dominate the Internet, interest in nearsecond low-latency streaming has increased. Existing low-latency streaming platforms rely on using tens of seconds of video in the bu"er to o"er a seamless experience. Striving for near-second latency requires the receiver to make quick decisions regarding the download bitrate and the playback speed. To cope with the challenges, we design a new adaptive bitrate (ABR) scheme, Stallion, for STAndard Low-LAtency vIdeo cONtrol. Stallion uses a sliding window to measure the mean and standard deviation of both the bandwidth and latency. We evaluate Stallion and compare it to the standard DASH DYNAMIC algorithm over a variety of networking conditions. Stallion shows 1.8x increase in bitrate, and 4.3x reduction in the number of stalls.more » « less
-
In recent years, streamed 360° videos have gained popularity within Virtual Reality (VR) and Augmented Reality (AR) applications. However, they are of much higher resolutions than 2D videos, causing greater bandwidth consumption when streamed. This increased bandwidth utilization puts tremendous strain on the network capacity of the cloud providers streaming these videos. In this paper, we introduce L3BOU, a novel, three-tier distributed software framework that reduces cloud-edge bandwidth in the backhaul network and lowers average end-to-end latency for 360° video streaming applications. The L3BOU framework achieves low bandwidth and low latency by leveraging edge-based, optimized upscaling techniques. L3BOU accomplishes this by utilizing down-scaled MPEG-DASH-encoded 360° video data, known as Ultra Low Resolution (ULR) data, that the L3BOU edge applies distributed super-resolution (SR) techniques on, providing a high quality video to the client. L3BOU is able to reduce the cloud-edge backhaul bandwidth by up to a factor of 24, and the optimized super-resolution multi-processing of ULR data provides a 10-fold latency decrease in super resolution upscaling at the edge.more » « less
-
null (Ed.)This paper presents a Brownian-approximation framework to optimize the quality of experience (QoE) for real-time video streaming in wireless networks. In real-time video streaming, one major challenge is to tackle the natural tension between the two most critical QoE metrics: playback latency and video interruption. To study this trade-off, we first propose an analytical model that precisely captures all aspects of the playback process of a real-time video stream, including playback latency, video interruptions, and packet dropping. Built on this model, we show that the playback process of a real-time video can be approximated by a two-sided reflected Brownian motion. Through such Brownian approximation, we are able to study the fundamental limits of the two QoE metrics and characterize a necessary and sufficient condition for a set of QoE performance requirements to be feasible. We propose a scheduling policy that satisfies any feasible set of QoE performance requirements and then obtain simple rules on the trade-off between playback latency and the video interrupt rates, in both heavy-traffic and under-loaded regimes. Finally, simulation results verify the accuracy of the proposed approximation and show that the proposed policy outperforms other popular baseline policies.more » « less