skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Occupational exoskeletons: Supporting diversity and inclusion goals with technology
Occupational exoskeletons are wearable devices that can augment a human worker's physical abilities. They are designed to protect the worker from physical stress and strain due to physically demanding tasks. They are also designed to increase a worker's ability to perform these tasks with less effort or to accommodate tasks with greater physical loads. There is a labor shortage for many physically demanding jobs in manufacturing, construction, agriculture, and healthcare. Occupational exoskeletons may enable more women and older workers to qualify for these jobs. Literature reviews on occupational exoskeletons and workplace diversity and inclusion were conducted to explore how this technology can facilitate diversity and inclusion goals. Future research directions are discussed for exoskeleton design and how they might affect work identities and perceptions of organizational inclusion for women and older workers who pursue vocations in physically demanding work.  more » « less
Award ID(s):
2128946
PAR ID:
10531470
Author(s) / Creator(s):
; ;
Editor(s):
Behrend, Tara; Ravid, Daniel; Rudolph, Cort W
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Vocational Behavior
Edition / Version:
1
Volume:
153
Issue:
C
ISSN:
0001-8791
Page Range / eLocation ID:
104016
Subject(s) / Keyword(s):
Occupational exoskeletons diversity and inclusion technology women older workers
Format(s):
Medium: X Size: 476 KB Other: pdf
Size(s):
476 KB
Sponsoring Org:
National Science Foundation
More Like this
  1. Tank farm workers involved in nuclear cleanup activities perform physically demanding tasks, typically while wearing heavy personal protective equipment (PPE). Exoskeleton devices have the potential to bring considerable benefit to this industry but have not been thoroughly studied in the context of nuclear cleanup. In this paper, we examine the performance of exoskeletons during a series of tasks emulating jobs performed on tank farms while participants wore PPE commonly deployed by tank farm workers. The goal of this study was to evaluate the effects of commercially available lower-body exoskeletons on a user’s gait kinematics and user perceptions. Three participants each tested three lower-body exoskeletons in a 70-min protocol consisting of level treadmill walking, incline treadmill walking, weighted treadmill walking, a weight lifting session, and a hand tool dexterity task. Results were compared to a no exoskeleton baseline condition and evaluated as individual case studies. The three participants showed a wide spectrum of user preferences and adaptations toward the devices. Individual case studies revealed that some users quickly adapted to select devices for certain tasks while others remained hesitant to use the devices. Temporal effects on gait change and perception were also observed for select participants in device usage over the course of the device session. Device benefit varied between tasks, but no conclusive aggregate trends were observed across devices for all tasks. Evidence suggests that device benefits observed for specific tasks may have been overshadowed by the wide array of tasks used in the protocol. 
    more » « less
  2. Work-related musculoskeletal disorders (WMSDs) are a leading cause of injury for workers who are performing physically demanding and repetitive construction tasks. With recent advances in robotics, wearable robots are introduced into the construction industry to mitigate the risk of WMSDs by correcting the workers’ postures and reducing the load exerted on their body joints. While wearable robots promise to reduce the muscular and physical demands on workers to perform tasks, there is a lack of understanding of the impact of wearable robots on worker ergonomics. This lack of understanding may lead to new ergonomic injuries for worker swearing exoskeletons. To bridge this gap, this study aims to assess the workers’ ergonomic risk when using a wearable robot (back-support exoskeleton) in one of the most common construction tasks, material handling. In this research, a vision-based pose estimation algorithm was developed to estimate the pose of the worker while wearing a back-support exoskeleton. As per the estimated pose, joint angles between connected body parts were calculated. Then, the worker’s ergonomic risk was assessed from the calculated angles based on the Rapid Entire Body Assessment (REBA) method. Results showed that using the back-support exoskeleton reduced workers’ ergonomic risk by 31.7% by correcting awkward postures of the trunk and knee during material handling tasks, compared to not using the back-support exoskeleton. The results are expected to facilitate the implementation of wearable robots in the construction industry. 
    more » « less
  3. Emergency response (ER) workers perform extremely demanding physical and cognitive tasks that can result in serious injuries and loss of life. Human augmentation technologies have the potential to enhance physical and cognitive work-capacities, thereby dramatically transforming the landscape of ER work, reducing injury risk, improving ER, as well as helping attract and retain skilled ER workers. This opportunity has been significantly hindered by the lack of high-quality training for ER workers that effectively integrates innovative and intelligent augmentation solutions. Hence, new ER learning environments are needed that are adaptive, affordable, accessible, and continually available for reskilling the ER workforce as technological capabilities continue to improve. This article presents the research considerations in the design and integration of use-inspired exoskeletons and augmented reality technologies in ER processes and the identification of unique cognitive and motor learning needs of each of these technologies in context-independent and ER-relevant scenarios. We propose a human-centered artificial intelligence (AI) enabled training framework for these technologies in ER. Finally, how these human-centered training requirements for nascent technologies are integrated in an intelligent tutoring system that delivers across tiered access levels, covering the range of virtual, to mixed, to physical reality environments, is discussed. 
    more » « less
  4. Amavilah, Voxi Heinrich (Ed.)
    BackgroundThe fast-changing labor market highlights the need for an in-depth understanding of occupational mobility impacted by technological change. However, we lack a multidimensional classification scheme that considers similarities of occupations comprehensively, which prevents us from predicting employment trends and mobility across occupations. This study fills the gap by examining employment trends based on similarities between occupations. MethodWe first demonstrated a new method that clusters 756 occupation titles based on knowledge, skills, abilities, education, experience, training, activities, values, and interests. We used the Principal Component Analysis to categorize occupations in the Standard Occupational Classification, which is grouped into a four-level hierarchy. Then, we paired the occupation clusters with the occupational employment projections provided by the U.S. Bureau of Labor Statistics. We analyzed how employment would change and what factors affect the employment changes within occupation groups. Particularly, we specified factors related to technological changes. ResultsThe results reveal that technological change accounts for significant job losses in some clusters. This poses occupational mobility challenges for workers in these jobs at present. Job losses for nearly 60% of current employment will occur in low-skill, low-wage occupational groups. Meanwhile, many mid-skilled and highly skilled jobs are projected to grow in the next ten years. ConclusionOur results demonstrate the utility of our occupational classification scheme. Furthermore, it suggests a critical need for skills upgrading and workforce development for workers in declining jobs. Special attention should be paid to vulnerable workers, such as older individuals and minorities. 
    more » « less
  5. The labor-intensive nature of the construction industry requires workers to frequently perform physically demanding manual work, thereby exposing them to the risk of musculoskeletal injury (approximately 31.2 cases per 10,000 full-time equivalent workers). Exoskeletons and exosuits (collectively called EXOs here) are designed to protect workers from these injuries by reducing exertion and muscle fatigue during work. However, the usability of EXOs in construction is still not clear. This is because extant EXO assessments in construction were mainly conducted in laboratory environments with test participants who are not construction professionals. In this research, we conducted a pilot study to investigate the usability of EXOs in a real construction workplace. Four experienced workers were recruited to push/empty construction gondolas with and without a Back-Support EXO, HeroWear Apex. Three workers were recruited to install/remove wooden blocks between steel studs with and without two Arm-Support EXOs, i.e., Ekso EVO and Hilti EXO-001. Their motions, postures, heart rates, and task completion times were recorded and compared. The workers were also surveyed to gather their attitudes toward the EXO’s usefulness and ease of use. The study results demonstrated that the workers responded to the use of EXOs differently and consequently were not unanimously in favor of EXO adoption in practice. The preliminary results and findings from this pilot study help in building a foundation of understanding to improve EXO products to fit the needs of construction workers and foster EXO-enabled construction tasks in the future. 
    more » « less