Abstract Insects are highly capable walkers, but many questions remain regarding how the insect nervous system controls locomotion. One particular question is how information is communicated between the ‘lower level’ ventral nerve cord (VNC) and the ‘higher level’ head ganglia to facilitate control. In this work, we seek to explore this question by investigating how systems traditionally described as ‘positive feedback’ may initiate and maintain stepping in the VNC with limited information exchanged between lower and higher level centers. We focus on the ‘reflex reversal’ of the stick insect femur-tibia joint between a resistance reflex (RR) and an active reaction in response to joint flexion, as well as the activation of populations of descending dorsal median unpaired (desDUM) neurons from limb strain as our primary reflex loops. We present the development of a neuromechanical model of the stick insect ( Carausius morosus ) femur-tibia (FTi) and coxa-trochanter joint control networks ‘in-the-loop’ with a physical robotic limb. The control network generates motor commands for the robotic limb, whose motion and forces generate sensory feedback for the network. We based our network architecture on the anatomy of the non-spiking interneuron joint control network that controls the FTi joint, extrapolated network connectivity based on known muscle responses, and previously developed mechanisms to produce ‘sideways stepping’. Previous studies hypothesized that RR is enacted by selective inhibition of sensory afferents from the femoral chordotonal organ, but no study has tested this hypothesis with a model of an intact limb. We found that inhibiting the network’s flexion position and velocity afferents generated a reflex reversal in the robot limb’s FTi joint. We also explored the intact network’s ability to sustain steady locomotion on our test limb. Our results suggested that the reflex reversal and limb strain reinforcement mechanisms are both necessary but individually insufficient to produce and maintain rhythmic stepping in the limb, which can be initiated or halted by brief, transient descending signals. Removing portions of this feedback loop or creating a large enough disruption can halt stepping independent of the higher-level centers. We conclude by discussing why the nervous system might control motor output in this manner, as well as how to apply these findings to generalized nervous system understanding and improved robotic control.
more »
« less
Passive Wireless Body Joint‐Monitoring Networks with Textile‐Integrated, Strongly Coupled Magnetic Resonators
Abstract Current joint angle monitoring techniques—essential for evaluating biomechanical functions and rehabilitation outcomes—face significant challenges. These may include dependency on specific environmental lighting and clear line‐of‐sight, complex setup and calibration, or sensing modalities that may interfere with natural motion. Additionally, the durability of these methods is often compromised by mechanical failures due to repetitive motion. Here, textile (or skin‐borne) strongly coupled magnetic resonators that can be distributed cross‐body to form advanced joint monitoring networks is demonstrated. Flexible magneto‐inductive loops can be positioned adjacent to joints, continuously monitoring limb coordination without being directly subjected to large joint strains. Such a technique minimizes both impediments to joint motion and material fatigue. Networks are lastly utilized to monitor and identify limb activity during diverse user stretches and exercises.
more »
« less
- Award ID(s):
- 1942364
- PAR ID:
- 10531884
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Electronic Materials
- Volume:
- 11
- Issue:
- 3
- ISSN:
- 2199-160X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)In this study, a methodology for designing a task-based exoskeleton which can recreate the end-effector trajectory of a given limb during a rehabilitation task/movement is presented. The exoskeleton provides an option to replace traditional joint-based exoskeleton joints, which often have alignment issues with the biological joint. The proper fit of the exoskeleton to the user and task are research topics to reduce pain or joint injuries as well as for the execution of the task. The proposed task-based synthesis method was successfully applied to generate the 3D motions of the elbow flexion and extensions using a one degree of freedom (DOF), spatial four-bar mechanism. The elbow joint is analyzed through motion capture system to develop the bio-exoskeleton. The resulted exoskeleton does not need to align with the corresponding limb joint to generate the desired anatomical motion.more » « less
-
Humans have an astonishing ability to extract hidden information from the movements of others. For example, even with limited kinematic information, humans can distinguish between biological and nonbiological motion, identify the age and gender of a human demonstrator, and recognize what action a human demonstrator is performing. It is unknown, however, whether they can also estimate hidden mechanical properties of another’s limbs simply by observing their motions. Strictly speaking, identifying an object’s mechanical properties, such as stiffness, requires contact. With only motion information, unambiguous measurements of stiffness are fundamentally impossible, since the same limb motion can be generated with an infinite number of stiffness values. However, we show that humans can readily estimate the stiffness of a simulated limb from its motion. In three experiments, we found that participants linearly increased their rating of arm stiffness as joint stiffness parameters in the arm controller increased. This was remarkable since there was no physical contact with the simulated limb. Moreover, participants had no explicit knowledge of how the simulated arm was controlled. To successfully map nontrivial changes in multijoint motion to changes in arm stiffness, participants likely drew on prior knowledge of human neuromotor control. Having an internal representation consistent with the behavior of the controller used to drive the simulated arm implies that this control policy competently captures key features of veridical biological control. Finding that humans can extract latent features of neuromotor control from kinematics also provides new insight into how humans interpret the motor actions of others. NEW & NOTEWORTHY Humans can visually perceive another’s overt motion, but it is unknown whether they can also perceive the hidden dynamic properties of another’s limbs from their motions. Here, we show that humans can correctly infer changes in limb stiffness from nontrivial changes in multijoint limb motion without force information or explicit knowledge of the underlying limb controller. Our findings suggest that humans presume others control motor behavior in such a way that limb stiffness influences motion.more » « less
-
Inertial kinetics and kinematics have substantial influences on human biomechanical function. A new algorithm for Inertial Measurement Unit (IMU)-based motion tracking is presented in this work. The primary aims of this paper are to combine recent developments in improved biosensor technology with mainstream motion-tracking hardware to measure the overall performance of human movement based on joint axis-angle representations of limb rotation. This work describes an alternative approach to representing three-dimensional rotations using a normalized vector around which an identified joint angle defines the overall rotation, rather than a traditional Euler angle approach. Furthermore, IMUs allow for the direct measurement of joint angular velocities, offering the opportunity to increase the accuracy of instantaneous axis of rotation estimations. Although the axis-angle representation requires vector quotient algebra (quaternions) to define rotation, this approach may be preferred for many graphics, vision, and virtual reality software applications. The analytical method was validated with laboratory data gathered from an infant dummy leg’s flexion and extension knee movements and applied to a living subject’s upper limb movement. The results showed that the novel approach could reasonably handle a simple case and provide a detailed analysis of axis-angle migration. The described algorithm could play a notable role in the biomechanical analysis of human joints and offers a harbinger of IMU-based biosensors that may detect pathological patterns of joint disease and injury.more » « less
-
null (Ed.)Perception of limb position and motion combines sensory information from spindles in muscles that span one joint (monoarticulars) and two joints (biarticulars). This anatomical organization should create interactions in estimating limb position. We developed two models, one with only monoarticulars and one with both monoarticulars and biarticulars, to explore how biarticulars influence estimates of arm position in hand ( x, y) and joint ( shoulder, elbow) coordinates. In hand coordinates, both models predicted larger medial-lateral than proximal-distal errors, although the model with both muscle groups predicted that biarticulars would reduce this bias. In contrast, the two models made significantly different predictions in joint coordinates. The model with only monoarticulars predicted that errors would be uniformly distributed because estimates of angles at each joint would be independent. In contrast, the model that included biarticulars predicted that errors would be coupled between the two joints, resulting in smaller errors for combinations of flexion or extension at both joints and larger errors for combinations of flexion at one joint and extension at the other joint. We also carried out two experiments to examine errors made by human subjects during an arm position matching task in which a robot passively moved one arm to different positions and the subjects moved their other arm to mirror-match each position. Errors in hand coordinates were similar to those predicted by both models. Critically, however, errors in joint coordinates were only similar to those predicted by the model with monoarticulars and biarticulars. These results highlight how biarticulars influence perceptual estimates of limb position by helping to minimize medial-lateral errors. NEW & NOTEWORTHY It is unclear how sensory information from muscle spindles located within muscles spanning multiple joints influences perception of body position and motion. We address this issue by comparing errors in estimating limb position made by human subjects with predicted errors made by two musculoskeletal models, one with only monoarticulars and one with both monoarticulars and biarticulars. We provide evidence that biarticulars produce coupling of errors between joints, which help to reduce errors.more » « less
An official website of the United States government
