Abstract In this comprehensive review, I focus on the twentyE. coliaminoacyl‐tRNA synthetases and their ability to charge non‐canonical amino acids (ncAAs) onto tRNAs. The promiscuity of these enzymes has been harnessed for diverse applications including understanding and engineering of protein function, creation of organisms with an expanded genetic code, and the synthesis of diverse peptide libraries for drug discovery. The review catalogues the structures of all known ncAA substrates for each of the 20E. coliaminoacyl‐tRNA synthetases, including ncAA substrates for engineered versions of these enzymes. Drawing from the structures in the list, I highlight trends and novel opportunities for further exploitation of these ncAAs in the engineering of protein function, synthetic biology, and in drug discovery.
more »
« less
Plants against cancer: towards green Taxol production through pathway discovery and metabolic engineering
Abstract The diversity of plant natural products presents a rich resource for accelerating drug discovery and addressing pressing human health issues. However, the challenges in accessing and cultivating source species, as well as metabolite structural complexity, and general low abundance present considerable hurdles in developing plant-derived therapeutics. Advances in high-throughput sequencing, genome assembly, gene synthesis, analytical technologies, and synthetic biology approaches, now enable us to efficiently identify and engineer enzymes and metabolic pathways for producing natural and new-to-nature therapeutics and drug candidates. This review highlights challenges and progress in plant natural product discovery and engineering by example of recent breakthroughs in identifying the missing enzymes involved in the biosynthesis of the anti-cancer agent Taxol®. These enzyme resources offer new avenues for the bio-manufacture and semi-synthesis of an old blockbuster drug.
more »
« less
- Award ID(s):
- 2312181
- PAR ID:
- 10531967
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- aBIOTECH
- ISSN:
- 2662-1738
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Microbial natural products are a major source of bioactive compounds for drug discovery. Among these molecules, nonribosomal peptides (NRPs) represent a diverse class of natural products that include antibiotics, immunosuppressants, and anticancer agents. Recent breakthroughs in natural product discovery have revealed the chemical structure of several thousand NRPs. However, biosynthetic gene clusters (BGCs) encoding them are known only for a few hundred compounds. Here, we developed Nerpa, a computational method for the high-throughput discovery of novel BGCs responsible for producing known NRPs. After searching 13,399 representative bacterial genomes from the RefSeq repository against 8368 known NRPs, Nerpa linked 117 BGCs to their products. We further experimentally validated the predicted BGC of ngercheumicin from Photobacterium galatheae via mass spectrometry. Nerpa supports searching new genomes against thousands of known NRP structures, and novel molecular structures against tens of thousands of bacterial genomes. The availability of these tools can enhance our understanding of NRP synthesis and the function of their biosynthetic enzymes.more » « less
-
Abstract Natural products are the great sources of drugs and leading compounds in drug discovery, as it has been estimated that most of the current medicines are derived from natural products. Total synthesis of natural products, especially those of biological activities, has been an important part of organic chemistry, which, besides its potential practical utilities, also provides new inspirations and novel synthetic methodologies. Over the past two decades, organocatalysis has been shown to be very effective in controlling the stereochemistry of the reaction products and has found many applications in the asymmetric synthesis of natural products and related compounds. In this review we will attempt to summarize some applications of asymmetric organocatalysis in the total synthesis of natural products and related compounds in the past seven years.more » « less
-
Inhibition of overexpressed enzymes is among the most promising approaches for targeted cancer treatment. However, many cancer-expressed enzymes are “nonlethal,” in that the inhibition of the enzymes’ activity is insufficient to kill cancer cells. Conventional antibody-based therapeutics can mediate efficient treatment by targeting extracellular nonlethal targets but can hardly target intracellular enzymes. Herein, we report a cancer targeting and treatment strategy to utilize intracellular nonlethal enzymes through a combination of selective cancer stem-like cell (CSC) labeling and Click chemistry-mediated drug delivery. A de novo designed compound, AAMCHO [N-(3,4,6-triacetyl- N-azidoacetylmannosamine)-cis-2-ethyl-3-formylacrylamideglycoside], selectively labeled cancer CSCs in vitro and in vivo through enzymatic oxidation by intracellular aldehyde dehydrogenase 1A1. Notably, azide labeling is more efficient in identifying tumorigenic cell populations than endogenous markers such as CD44. A dibenzocyclooctyne (DBCO)-toxin conjugate, DBCO-MMAE (Monomethylauristatin E), could next target the labeled CSCs in vivo via bioorthogonal Click reaction to achieve excellent anticancer efficacy against a series of tumor models, including orthotopic xenograft, drug-resistant tumor, and lung metastasis with low toxicity. A 5/7 complete remission was observed after single-cycle treatment of an advanced triple-negative breast cancer xenograft (~500 mm3).more » « less
-
Champion, Patricia A (Ed.)ABSTRACT Tuberculosis is caused by the bacteriumMycobacterium tuberculosis(Mtb). While eukaryotic species employ several specialized RNA polymerases (Pols) to fulfill the RNA synthesis requirements of the cell, bacterial species use a single RNA polymerase (RNAP). To contribute to the foundational understanding of how Mtb and the related non-pathogenic mycobacterial species,Mycobacterium smegmatis(Msm), perform the essential function of RNA synthesis, we performed a series ofin vitrotranscription experiments to define the unique enzymatic properties of Mtb and Msm RNAPs. In this study, we characterize the mechanism of nucleotide addition used by these bacterial RNAPs with comparisons to previously characterized eukaryotic Pols I, II, and III. We show that Mtb RNAP and Msm RNAP demonstrate similar enzymatic properties and nucleotide addition kinetics to each other but diverge significantly from eukaryotic Pols. We also show that Mtb RNAP and Msm RNAP uniquely bind a nucleotide analog with significantly higher affinity than canonical nucleotides, in contrast to eukaryotic RNA polymerase II. This affinity for analogs may reveal a vulnerability for selective inhibition of the pathogenic bacterial enzyme.IMPORTANCETuberculosis, caused by the bacteriumMycobacterium tuberculosis(Mtb), remains a severe global health threat. The World Health Organization (WHO) has reported that tuberculosis is second only to COVID-19 as the most lethal infection worldwide, with more annual deaths than HIV and AIDS (WHO.int). The first-line treatment for tuberculosis, Rifampin (or Rifampicin), specifically targets the Mtb RNA polymerase. This drug has been used for decades, leading to increased numbers of multi-drug-resistant infections (Stephanie,et al). To effectively treat tuberculosis, there is an urgent need for new therapeutics that selectively target vulnerabilities of the bacteria and not the host. Characterization of the differences between Mtb enzymes and host enzymes is critical to inform these ongoing drug design efforts.more » « less
An official website of the United States government

