The ability to sense propagating electromagnetic plane waves based on their directions of arrival (DOAs) is fundamental to a range of radio frequency (RF) sensing, communications, and imaging applications. This paper introduces an algorithm for the wideband true time delay digital delay Vandermonde matrix (DVM), utilizing Thiran fractional delays that are useful for realizing RF sensors having multiple look DOA support. The digital DVM algorithm leverages sparse matrix factorization to yield multiple simultaneous RF beams for low-complexity sensing applications. Consequently, the proposed algorithm offers a reduction in circuit complexity for multi-beam digital wideband beamforming systems employing Thiran fractional delays. Unlike finite impulse response filter-based approaches which are wideband but of a high filter order, the Thiran filters trade usable bandwidth in favor of low-complexity circuits. The phase and group delay responses of Thiran filters with delays of a fractional sampling period will be demonstrated. Thiran filters show favorable results for sample delay blocks with a temporal oversampling factor of three. Thiran fractional delays of orders three and four are mapped to Xilinx FPGA RF-SoC technologies for evaluation. The preliminary results of the APF-based Thiran fractional delays on FPGA can potentially be used to realize DVM factorizations using application-specific integrated circuit (ASIC) technology.
more »
« less
Convex Optimization Based Design of Finite Impulse Response Filters for Reference Shaping
Abstract This paper explores design of finite impulse response (FIR) filters for controlling underdamped systems while dealing with uncertainties in model parameters. By setting magnitude constraints in the frequency domain within a convex programing framework, it ensures that dominant resonant modes are attenuated at the end of the maneuver, high-frequency unmodeled modes are not excited, and there is no inordinate accentuation of frequencies in the passband of the filter. A mobile platform with an attached flexible beam serves as a testbed to validate the designs for rest to rest maneuvers, demonstrating how different cost functions of error between the desired and optimized magnitude response affect the filter performance. The study also examines robustness in the notch area by shifting the natural frequencies of the system by shifting a tip mass at the free end of the beam. The total energy at the final maneuver time of the first three system modes is calculated as a vibration suppression metric and is used to compare established input shapers with the proposed finite impulse response filters.
more »
« less
- Award ID(s):
- 2021710
- PAR ID:
- 10531985
- Publisher / Repository:
- ASME
- Date Published:
- Journal Name:
- Journal of Dynamic Systems, Measurement, and Control
- Volume:
- 146
- Issue:
- 5
- ISSN:
- 0022-0434
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Through the implementation of a streaming filter, output of numerical ocean simulations can be band‐pass filtered at tidal frequencies while the model is running, yielding time series of sinusoidal motions consisting of tidal signals in the filter's target frequency band. The filtering algorithm is developed from a system of two ordinary differential equations that represents the motion of a damped harmonic oscillator. The filter's response to a broadband input signal is unity at its target frequency but vanishes toward the low and high frequency limits. The decay of the filter response is controlled by a dimensionless parameter, which determines the filter's bandwidth. As a result, the filter allows signals within a small frequency band around its target frequency to pass through, while blocking signals outside of its target frequency band. In this work, the filtering algorithm is implemented into the barotropic solver of the Modular Ocean Model version 6 (MOM6) for determining the instantaneous tidal velocities of the semi‐diurnal and diurnal tides. Utilizing the filters, the frequency‐dependent internal wave drag is applied to the semi‐diurnal and diurnal frequency bands separately. The simulation results suggest that the performance of the algorithm is consistent with the filter transfer function in Fourier space. Potential applications of the algorithm also include de‐tiding the model output for nested regional ocean models, especially those for the purpose of operational forecasting.more » « less
-
This work presents an interference-adaptive Gallium Nitride (GaN) low-noise amplifier (LNA) front-end with orthogonal frequency and linearity tuning for applications in communication base stations, radar and electronic warfare (EW). The system operates between 2–6 GHz and provides a sub 5 ms tuning time for an input power tuning range of 40 dB. The orthogonal tuning consists of two phases: 1. frequency tuning with four tunable bandpass and bandstop filters for interference rejection, 2. linearity tuning with a combination of coarse tuning through look-up table (LUT) and fine-tuning through incremental adaptation to trade off power with linearity. GaN LNA’s linearity can be adjusted between P textsubscript 1dB,IN = -10 and 1.5 dBm with output P textsubscript 1dB up to 25 dBm (11.5 dB range) with the LNA power changing from 500 mW to 2 W (x4 increase). The average LNA power with orthogonal frequency and linearity tuning decreases by 56% as compared with the system operating at the worst-case no tuning condition. Two systems involving commercial filters and custom cavity resonator-based filters were constructed. The filters further increase the system P textsubscript 1dB,IN by the filter rejection of the interference signal. The rest of the controls consume about 10% of the worst-case condition LNA power.more » « less
-
A compact acoustic waveguide demultiplexer configuration is studied via finite-element numerical modeling and audio frequency experiments. The demultiplexer consists of a Y-shaped waveguide with a single input and two outputs. The narrow transmission bands created by stubs side-loaded on each output arm lead to selective transmission of certain frequencies. The experimental work characterizes the broadband response along each output arm by using an impulse response method. Finite-element numerical simulations are conducted using COMSOL. The results of the experiment and the simulation are compared to an existing analytic theory.more » « less
-
The application of acoustic ring resonator structures for the manipulation of audio frequency acoustic waves is demonstrated experimentally and via numerical simulation. Three ring resonator systems are demonstrated: a simple single ring structure that acts as a comb/notch filter, a single ring between two parallel waveguides that acts as an add-drop filter, and a sequential array of equally spaced rings that creates acoustic bandgaps. The experiments are conducted in linear waveguides using an impulse response method. The ring resonators were created via 3D printing. Finite element numerical simulations were conducted using COMSOL.more » « less
An official website of the United States government

