skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cosmic Sands. II. Challenges in Predicting and Measuring High-z Dust Temperatures
Abstract In the current era of high-zgalaxy discovery with JWST and the Atacama Large Millimeter/submillimeter Array, our ability to study the stellar populations and interstellar medium conditions in a diverse range of galaxies at Cosmic Dawn has rapidly improved. At the same time, the need to understand the current limitations in modeling galaxy formation processes and physical properties in order to interpret these observations is critical. Here, we study the challenges in modeling galaxy dust temperatures, both in the context of forward modeling galaxy spectral properties from a hydrodynamical simulation and via backwards modeling galaxy physical properties from mock observations of far-infrared dust emission. Using thesimbamodel for galaxy formation combined withpowderdayradiative transfer, we can accurately predict the evolution of dust at high redshift, though several aspects of the model are essentially free parameters (dust composition, subresolution dust in star-forming regions) that dull the predictive power of the model dust temperature distributions. We also highlight the uncertainties in the backwards modeling methods, where we find the commonly used models and assumptions to fit far-infrared spectral energy distributions and infer dust temperatures (e.g., single temperature, optically thin modified blackbody) largely fail to capture the complexity of high-zdusty galaxies. We caution that conclusions inferred from both simulations—limited by resolution and post-processing techniques—and observations—limited by sparse data and simplistic model parameterizations—are susceptible to unique and nuanced uncertainties that can limit the usefulness of current high-zdust measurements.  more » « less
Award ID(s):
1909153
PAR ID:
10532000
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ApJ
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
965
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present the first detailed study of the spatially resolved dust continuum emission of simulated galaxies at 1 < z < 5. We run the radiative transfer code skirt on a sample of submillimetre-bright galaxies drawn from the Feedback In Realistic Environments (FIRE) project. These simulated galaxies reach Milky Way masses by z = 2. Our modelling provides predictions for the full rest-frame far-ultraviolet-to-far-infrared spectral energy distributions of these simulated galaxies, as well as 25-pc resolution maps of their emission across the wavelength spectrum. The derived morphologies are notably different in different wavebands, with the same galaxy often appearing clumpy and extended in the far-ultraviolet yet an ordered spiral at far-infrared wavelengths. The observed-frame 870-$$\mu$$m half-light radii of our FIRE-2 galaxies are $${\sim} 0.5\rm {-}4\, \rm {kpc}$$, consistent with existing ALMA observations of galaxies with similarly high redshifts and stellar masses. In both simulated and observed galaxies, the dust continuum emission is generally more compact than the cold gas and the dust mass, but more extended than the stellar component. The most extreme cases of compact dust emission seem to be driven by particularly compact recent star formation, which generates steep dust temperature gradients. Our results confirm that the spatial extent of the dust continuum emission is sensitive to both the dust mass and star formation rate distributions. 
    more » « less
  2. The most active phases of star formation and black hole accretion are strongly affected by dust extinction, making far-infrared (FIR) observations the best way to disentangle and study the co-evolution of galaxies and super massive black holes. The plethora of fine-structure lines and emission features from dust and ionised and neutral atomic and warm molecular gas in the rest-frame mid-infrared (MIR) and FIR provide unmatched diagnostic opportunities to determine the properties of gas and dust, measure gas-phase metallicities, and map cold galactic outflows in even the most obscured galaxies. By combining multi-band photometric surveys with low- and high-resolution FIR spectroscopy, the PRobe far-Infrared Mission for Astrophysics (PRIMA), a 1.8 m diameter, cryogenically cooled FIR observatory currently at the conception stage, will revolutionise the field of galaxy evolution by taking advantage of this IR toolkit to find and study dusty galaxies across galactic time. In this work, we make use of the phenomenological simulation SPRITZand the Santa Cruz semi-analytical model to describe how a moderately deep multi-band PRIMA photometric survey can easily reach beyond previous IR missions to detect and study galaxies down to 1011 Lbeyond cosmic noon and at least up toz = 4, even in the absence of gravitational lensing. By decomposing the spectral energy distribution (SED) of these photometrically selected galaxies, we show that PRIMA can be used to accurately measure the relative AGN power, the mass fraction contributed by polycyclic aromatic hydrocarbons (PAHs), and the total IR luminosity. At the same time, spectroscopic follow up with PRIMA will allow us to trace both the star formation and black hole accretion rates (SFRs and BHARs), the gas-phase metallicities, and the mass-outflow rates of cold gas in hundreds to thousands of individual galaxies toz = 2. 
    more » « less
  3. Abstract Single flux density measurements at observed-frame submillimeter and millimeter wavelengths are commonly used to probe dust and gas masses in galaxies. In this Letter, we explore the robustness of this method to infer dust mass, focusing on quiescent galaxies, using a series of controlled experiments on four massive halos from the Feedback in Realistic Environments project. Our starting point is four star-forming central galaxies at seven redshifts betweenz= 1.5 andz= 4.5. We generate modified quiescent galaxies that have been quenched for 100 Myr, 500 Myr, or 1 Gyr prior to each of the studied redshifts by reassigning stellar ages. We derive spectral energy distributions for each fiducial and modified galaxy using radiative transfer. We demonstrate that the dust mass inferred is highly dependent on the assumed dust temperature,Tdust, which is often unconstrained observationally. Motivated by recent work on quiescent galaxies that assumedTdust∼ 25 K, we show that the ratio between dust mass and 1.3 mm flux density can be higher than inferred by up to an order of magnitude, due to the considerably lower dust temperatures seen in non-star-forming galaxies. This can lead to an underestimation of dust mass (and, when submillimeter flux density is used as a proxy for molecular gas content and gas mass). This underestimation is most severe at higher redshifts, where the observed-frame 1.3 mm flux density probes rest-frame wavelengths far from the Rayleigh–Jeans regime, and hence depends superlinearly on dust temperature. We fit relations between ratios of rest-frame far-infrared flux densities and mass-weighted dust temperature that can be used to constrain dust temperatures from observations and hence derive more reliable dust and molecular gas masses. 
    more » « less
  4. Abstract The spectral line energy distribution of carbon monoxide contains information about the physical conditions of the star-forming molecular hydrogen gas; however, the relation to local radiation field properties is poorly constrained. Using ∼1–2 kpc scale Atacama Large Millimeter Array observations of CO(3−2) and CO(4−3), we characterize the CO(4−3)/CO(3−2) line ratios of local analogues of main-sequence galaxies at z ∼ 1–2, drawn from the DYnamics of Newly Assembled Massive Objects (DYNAMO) sample. We measure CO(4−3)/CO(3−2) across the disk of each galaxy and find a median line ratio of R 43 = 0.54 − 0.15 + 0.16 for the sample. This is higher than literature estimates of local star-forming galaxies and is consistent with multiple lines of evidence that indicate DYNAMO galaxies, despite residing in the local universe, resemble main-sequence galaxies at z ∼ 1–2. Comparing with existing lower-resolution CO(1−0) observations, we find R 41 and R 31 values in the range ∼0.2–0.3 and ∼0.4–0.8, respectively. We combine our kiloparsec-scale resolved line ratio measurements with Hubble Space Telescope observations of H α to investigate the relation to the star formation rate surface density and compare this relation to expectations from models. We find increasing CO(4−3)/CO(3−2) with increasing star formation rate surface density; however, models overpredict the line ratios across the range of star formation rate surface densities we probe, in particular at the lower range. Finally, Stratospheric Observatory for Infrared Astronomy observations with the High-resolution Airborne Wideband Camera Plus and Field-Imaging Far-Infrared Line Spectrometer reveal low dust temperatures and no deficit of [C ii ] emission with respect to the total infrared luminosity. 
    more » « less
  5. Abstract We present the radio properties of 66 spectroscopically confirmed normal star-forming galaxies (SFGs) at 4.4 <z< 5.9 in the COSMOS field that were [Cii]-detected in the Atacama Large Millimeter/submillimeter Array Large Program to INvestigate [Cii] at Early times (ALPINE). We separate these galaxies (“Cii-detected-all”) into lower-redshift (“Cii-detected-lz”; 〈z〉 = 4.5) and higher-redshift (“Cii-detected-hz”; 〈z〉 = 5.6) subsamples, and stack multiwavelength imaging for each subsample from X-ray to radio bands. A radio signal is detected in the stacked 3 GHz images of the Cii-detected-all and lz samples at ≳3σ. We find that the infrared–radio correlation of our sample, quantified byqTIR, is lower than the local relation for normal SFGs at a ∼3σsignificance level, and is instead broadly consistent with that of bright submillimeter galaxies at 2 <z< 5. Neither of these samples show evidence of dominant active galactic nucleus activity in their stacked spectral energy distributions (SEDs), UV spectra, or stacked X-ray images. Although we cannot rule out the possible effects of the assumed spectral index and applied infrared SED templates in causing these differences, at least partially, the lower obscured fraction of star formation than at lower redshift can alleviate the tension between our stackedqTIRs and those of local normal SFGs. It is possible that the dust buildup, which primarily governs the infrared emission, in addition to older stellar populations, has not had enough time to occur fully in these galaxies, whereas the radio emission can respond on a more rapid timescale. Therefore, we might expect a lowerqTIRto be a general property of high-redshift SFGs. 
    more » « less