Cheshkov, C; Guernane, R; Maire, A
(Ed.)
Although calculations of QCD thermodynamics from first-principle lattice simulations are limited to zero net-density due to the fermion sign problem, several methods have been developed to extend the equation of state (EoS) to finite values of theB,Q,Schemical potentials. Taylor expansion aroundµi=0 (i = B,Q,S) enables to cover with confidence the region up toµi/T< 2.5. Recently, a new method has been developed to compute a 2D EoS in the (T,µB) plane. It was constructed through aT-expansion scheme (TExS), based on a resummation of the Taylor expansion, and is trusted up to densities aroundµB/T= 3.5. We present here the new 4D-TExS EoS, a generalization of the TExS to all 3 chemical potentials, expected to offer a larger coverage than the 4D Taylor expansion EoS. After explaining the basics of theT-Expansion Scheme and how it is generalized to multiple dimensions, we will present results for thermodynamic observables as functions of temperature and both finite baryon and strangeness chemical potentials.
more »
« less
An official website of the United States government

