skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Information Design in the Principal-Agent Problem
We study a variant of the principal-agent problem in which the principal does not directly observe the outcomes; rather, she gets a signal related to the agent’s action, according to a variable information structure. We provide simple necessary and sufficient conditions for implementability of an action and a utility profile by some information structure and the corresponding optimal contract — for a riskneutral or risk-averse agent, with or without the limited liability assumption. It turns out that the set of implementable utility profiles is characterized by simple thresholds on the utilities.  more » « less
Award ID(s):
2303372
PAR ID:
10532235
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of 25th ACM Conference on Economics and Computation, EC 2024
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Woodruff, D (Ed.)
    This paper studies delegation in a model of discrete choice. In the delegation problem, an uninformed principal must consult an informed agent to make a decision. Both the agent and principal have preferences over the decided-upon action which vary based on the state of the world, and which may not be aligned. The principal may commit to a mechanism, which maps reports of the agent to actions. When this mechanism is deterministic, it can take the form of a menu of actions, from which the agent simply chooses upon observing the state. In this case, the principal is said to have delegated the choice of action to the agent. We consider a setting where the decision being delegated is a choice of a utility-maximizing action from a set of several options. We assume the shared portion of the agent's and principal's utilities is drawn from a distribution known to the principal, and that utility misalignment takes the form of a known bias for or against each action. We provide tight approximation analyses for simple threshold policies under three increasingly general sets of assumptions. With independently-distributed utilities, we prove a 3-approximation. When the agent has an outside option the principal cannot rule out, the constant-approximation fails, but we prove a log ρ/ log log ρ-approximation, where ρ is the ratio of the maximum value to the optimal utility. We also give a weaker but tight bound that holds for correlated values, and complement our upper bounds with hardness results. One special case of our model is utility-based assortment optimization, for which our results are new. 
    more » « less
  2. This paper studies delegation in a model of discrete choice. In the delegation problem, an uninformed principal must consult an informed agent to make a decision. Both the agent and principal have preferences over the decided-upon action which vary based on the state of the world, and which may not be aligned. The principal may commit to a mechanism, which maps reports of the agent to actions. When this mechanism is deterministic, it can take the form of a menu of actions, from which the agent simply chooses upon observing the state. In this case, the principal is said to have delegated the choice of action to the agent. We consider a setting where the decision being delegated is a choice of a utility-maximizing action from a set of several options. We assume the shared portion of the agent's and principal's utilities is drawn from a distribution known to the principal, and that utility misalignment takes the form of a known bias for or against each action. We provide tight approximation analyses for simple threshold policies under three increasingly general sets of assumptions. With independently-distributed utilities, we prove a 3-approximation. When the agent has an outside option the principal cannot rule out, the constant-approximation fails, but we prove a log ρ/ log log ρ-approximation, where ρ is the ratio of the maximum value to the optimal utility. We also give a weaker but tight bound that holds for correlated values, and complement our upper bounds with hardness results. One special case of our model is utility-based assortment optimization, for which our results are new. 
    more » « less
  3. We present a study on a repeated delegated choice problem, which is the first to consider an online learning variant of Kleinberg and Kleinberg, EC'18. In this model, a principal interacts repeatedly with an agent who possesses an exogenous set of solutions to search for efficient ones. Each solution can yield varying utility for both the principal and the agent, and the agent may propose a solution to maximize its own utility in a selfish manner. To mitigate this behavior, the principal announces an eligible set which screens out a certain set of solutions. The principal, however, does not have any information on the distribution of solutions nor the number of solutions in advance. Therefore, the principal dynamically announces various eligible sets to efficiently learn the distribution. The principal's objective is to minimize cumulative regret compared to the optimal eligible set in hindsight. We explore two dimensions of the problem setup, whether the agent behaves myopically or strategizes across the rounds, and whether the solutions yield deterministic or stochastic utility. We obtain sublinear regret upper bounds in various regimes, and derive corresponding lower bounds which implies the tightness of the results. Overall, we bridge a well-known problem in economics to the evolving area of online learning, and present a comprehensive study in this problem. 
    more » « less
  4. We consider information design in spatial resource competition, motivated by ride sharing platforms sharing information with drivers about rider demand. Each of N co-located agents (drivers) decides whether to move to another location with an uncertain and possibly higher resource level (rider demand), where the utility for moving increases in the resource level and decreases in the number of other agents that move. A principal who can observe the resource level wishes to share this information in a way that ensures a welfare-maximizing number of agents move. Analyzing the principal’s information design problem using the Bayesian persuasion framework, we study both private signaling mechanisms, where the principal sends personalized signals to each agent, and public signaling mechanisms, where the principal sends the same information to all agents. We show: 1) For private signaling, computing the optimal mechanism using the standard approach leads to a linear program with 2 N variables, rendering the computation challenging. We instead describe a computationally efficient two-step approach to finding the optimal private signaling mechanism. First, we perform a change of variables to solve a linear program with O(N^2) variables that provides the marginal probabilities of recommending each agent move. Second, we describe an efficient sampling procedure over sets of agents consistent with these optimal marginal probabilities; the optimal private mechanism then asks the sampled set of agents to move and the rest to stay. 2) For public signaling, we first show the welfare-maximizing equilibrium given any common belief has a threshold structure. Using this, we show that the optimal public mechanism with respect to the sender-preferred equilibrium can be computed in polynomial time. 3) We support our analytical results with numerical computations that show the optimal private and public signaling mechanisms achieve substantially higher social welfare when compared with no-information and full-information benchmarks. 
    more » « less
  5. We consider a game in which one player (the principal) seeks to incentivize another player (the agent) to exert effort that is costly to the agent. Any effort exerted leads to an outcome that is a stochastic function of the effort. The amount of effort exerted by the agent is private information for the agent and the principal observes only the outcome; thus, the agent can misreport his effort to gain higher payment. Further, the cost function of the agent is also unknown to the principal and the agent can also misreport a higher cost function to gain higher payment for the same effort. We pose the problem as one of contract design when both adverse selection and moral hazard are present. We show that if the principal and agent interact only finitely many times, it is always possible for the agent to lie due to the asymmetric information pattern and claim a higher payment than if he were unable to lie. However, if the principal and agent interact infinitely many times, then the principal can utilize the observed outcomes to update the contract in a manner that reveals the private cost function of the agent and hence leads to the agent not being able to derive any rent. The result can also be interpreted as saying that the agent is unable to keep his information private if he interacts with the principal sufficiently often. 
    more » « less