Accurate prediction of citywide crowd activity levels (CALs),i.e., the numbers of participants of citywide crowd activities under different venue categories at certain time and locations, is essential for the city management, the personal service applications, and the entrepreneurs in commercial strategic planning. Existing studies have not thoroughly taken into account the complex spatial and temporal interactions among different categories of CALs and their extreme occurrences, leading to lowered adaptivity and accuracy of their models. To address above concerns, we have proposedIE-CALP, a novel spatio-temporalInteractive attention-based andExtreme-aware model forCrowdActivityLevelPrediction. The tasks ofIE-CALPconsist of(a)forecasting the spatial distributions of various CALs at different city regions (spatial CALs), and(b)predicting the number of participants per category of the CALs (categorical CALs). To realize above, we have designed a novel spatial CAL-POI interaction-attentive learning component inIE-CALPto model the spatial interactions across different CAL categories, as well as those among the spatial urban regions and CALs. In addition,IE-CALPincorporate the multi-level trends (e.g., daily and weekly levels of temporal granularity) of CALs through a multi-level temporal feature learning component. Furthermore, to enhance the model adaptivity to extreme CALs (e.g., during extreme urban events or weather conditions), we further take into account theextreme value theoryand model the impacts of historical CALs upon the occurrences of extreme CALs. Extensive experiments upon a total of 738,715 CAL records and 246,660 POIs in New York City (NYC), Los Angeles (LA), and Tokyo have further validated the accuracy, adaptivity, and effectiveness ofIE-CALP’s interaction-attentive and extreme-aware CAL predictions.
more »
« less
STICAP : Spatio-temporal Interactive Attention for Citywide Crowd Activity Prediction
Accurate citywide crowd activity prediction (CAP) can enable proactive crowd mobility management and timely responses to urban events, which has become increasingly important for a myriad of smart city planning and management purposes. However, complex correlations across the crowd activities, spatial and temporal urban environment features and theirinteractivedependencies, and relevant external factors (e.g., weather conditions) make it highly challenging to predict crowd activities accurately in terms of different venue categories (for instance, venues related to dining, services, and residence) and varying degrees (e.g., daytime and nighttime). To address the above concerns, we proposeSTICAP, a citywide spatio-temporal interactive crowd activity prediction approach. In particular,STICAPtakes in the location-based social network check-in data (e.g., from Foursquare/Gowalla) as the model inputs and forecasts the crowd activity within each time step for each venue category. Furthermore, we have integrated multiple levels of temporal discretization to interactively capture the relations with historical data. Then, three parallelResidual Spatial Attention Networks(RSAN) in theSpatial Attention Componentexploit the hourly, daily, and weekly spatial features of crowd activities, which are further fused and processed by theTemporal Attention Componentforinteractive CAP. Along with other external factors such as weather conditions and holidays,STICAPadaptively and accurately forecasts the final crowd activities per venue category, enabling potential activity recommendation and other smart city applications. Extensive experimental studies based on three different real-world crowd activity datasets have demonstrated that our proposedSTICAPoutperforms the baseline and state-of-the-art algorithms in CAP accuracy, with an average error reduction of 35.02%.
more »
« less
- Award ID(s):
- 2118102
- PAR ID:
- 10532289
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM Transactions on Spatial Algorithms and Systems
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2374-0353
- Page Range / eLocation ID:
- 1 to 22
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
With rising global temperatures, urban environments are increasingly vulnerable to heat stress, often exacerbated by the Urban Heat Island (UHI) effect. While most UHI research has focused on large metropolitan areas around the world, relatively smaller-sized cities (with a population 100 000–300 000) remain understudied despite their growing exposure to extreme heat and meteorological significance. In particular, urban heat advection (UHA), the transport of heat by mean winds, remains a key but underexplored mechanism in most modeling frameworks. High-resolution numerical weather prediction (NWP) models are essential tools for simulating urban hydrometeorological conditions, yet most prior evaluations have focused on retrospective reanalysis products rather than forecasts. In this study, we assess the performance of a widely used operational weather forecast model, the High-Resolution Rapid Refresh (HRRR), as a representative example of current NWP systems. We investigate its ability to predict spatial and temporal patterns of urban heat and UHA within and around Lubbock, Texas, a small-sized city located in a semi-arid environment in the southwestern US. Using data collected between 1 September 2023, and 31 August 2024 from the Urban Heat Island Experiment in Lubbock, Texas (U-HEAT) network and five West Texas Mesonet stations, we compare 18 h forecasts against in situ observations. HRRR forecasts exhibit a consistent nighttime cold bias at both urban and rural sites, a daytime warm bias at rural locations, and a pervasive dry bias across all seasons. The model also systematically overestimates near-surface wind speeds, further limiting its ability to accurately predict UHA. Although HRRR captures the expected slower nocturnal cooling in urban areas, it does not well capture advective heat transport under most wind regimes. Our findings reveal both systematic biases and urban representation limitations in current high-resolution NWP forecasts. Our forecast–observation comparisons underscore the need for improved urban parameterizations and evaluation frameworks focused on forecast skill, with important implications for heat-risk warning systems and forecasting in small and mid-sized cities.more » « less
-
In the growing era of smart cities, data-driven decision-making is pivotal for urban planners and policymakers. Crowd-sourced data is a cost-effective means to collect this information, enabling more efficient urban management. However, ensuring data accuracy and establishing trustworthy “Ground Truth” in smart city sensor data presents unique challenges.Our study contributes by documenting the intricacies and obstacles associated with overcoming MAC randomization, sensor unpredictability, unreliable signal strength, and Wi-Fi probing inconsistencies in smart city data cleaning.We establish a framework for three different types of experiments: Counting, Proximity, and Sensor Range. Our novel approach incorporates the spatial layout of the city, an aspect often overlooked. We propose a database structure and metrics to enhance reproducibility and trust in the system.By presenting our findings, we aim to facilitate a deeper understanding of the nuances involved in handling sensor data, ultimately paving the way for more accurate and meaningful data-driven decision-making in smart cities.more » « less
-
Abstract—We present SaSTL—a novel Spatial Aggregation Signal Temporal Logic—for the efficient runtime monitoring of safety and performance requirements in smart cities. We first describe a study of over 1,000 smart city requirements, some of which can not be specified using existing logic such as Signal Temporal Logic (STL) and its variants. To tackle this limitation, we develop two new logical operators in SaSTL to augment STL for expressing spatial aggregation and spatial counting characteristics that are commonly found in real city requirements. We also develop efficient monitoring algorithms that can check a SaSTL requirement in parallel over multiple data streams (e.g., generated by multiple sensors distributed spatially in a city).We evaluate our SaSTL monitor by applying to two case studies with large-scale real city sensing data (e.g., up to 10,000 sensors in one requirement). The results show that SaSTL has a much higher coverage expressiveness than other spatial-temporal logics, and with a significant reduction of computation time for monitoring requirements. We also demonstrate that the SaSTL monitor can help improve the safety and performance of smart cities via simulated experiments.more » « less
-
In this paper, we propose MetaMobi, a novel spatio-temporal multi-dots connectivity-aware modeling and Meta model update approach for crowd Mobility learning. MetaMobi analyzes real-world Wi-Fi association data collected from our campus wireless infrastructure, with the goal towards enabling a smart connected campus. Specifically, MetaMobi aims at addressing the following two major challenges with existing crowd mobility sensing system designs: (a) how to handle the spatially, temporally, and contextually varying features in large-scale human crowd mobility distributions; and (b) how to adapt to the impacts of such crowd mobility patterns as well as the dynamic changes in crowd sensing infrastructures. To handle the first challenge, we design a novel multi-dots connectivity-aware learning approach, which jointly learns the crowd flow time series of multiple buildings with fusion of spatial graph connectivities and temporal attention mechanisms. Furthermore, to overcome the adaptivity issues due to changes in the crowd sensing infrastructures (e.g., installation of new ac- cess points), we further design a novel meta model update approach with Bernoulli dropout, which mitigates the over- fitting behaviors of the model given few-shot distributions of new crowd mobility datasets. Extensive experimental evaluations based on the real-world campus wireless dataset (including over 76 million Wi-Fi association and disassociation records) demonstrate the accuracy, effectiveness, and adaptivity of MetaMobi in forecasting the campus crowd flows, with 30% higher accuracy compared to the state-of-the-art approaches.more » « less
An official website of the United States government

