- Award ID(s):
- 2307008
- PAR ID:
- 10532338
- Publisher / Repository:
- INFORMS
- Date Published:
- Journal Name:
- Operations Research
- ISSN:
- 0030-364X
- Subject(s) / Keyword(s):
- queueing theory scheduling M/G/1 queue Gittins index response time tail heavy-tailed distributions light-tailed distributions
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We study the problem of scheduling jobs in a queueing system, specifically an M/G/1 with light-tailed job sizes, to asymptotically optimize the response time tail. This means scheduling to make P[T > t], the chance a job's response time exceeds t, decay as quickly as possible in the t \to \infty limit. For some time, the best known policy was First-Come First-Served (FCFS), which has an asymptotically exponential tail: P[T > t] ~ C e^-γ t . FCFS achieves the optimal decay rate γ, but its tail constant C is suboptimal. Only recently have policies that improve upon FCFS's tail constant been discovered. But it is unknown what the optimal tail constant is, let alone what policy might achieve it. In this paper, we derive a closed-form expression for the optimal tail constant C, and we introduce γ-Boost, a new policy that achieves this optimal tail constant. Roughly speaking, γ-Boost operates similarly to FCFS, but it pretends that small jobs arrive earlier than their true arrival times. This significantly reduces the response time of small jobs without unduly delaying large jobs, improving upon FCFS's tail constant by up to 50% with only moderate job size variability, with even larger improvements for higher variability. While these results are for systems with full job size information, we also introduce and analyze a version of γ-Boost that works in settings with partial job size information, showing it too achieves significant gains over FCFS. Finally, we show via simulation that γ-Boost has excellent practical performance.more » « less
-
Multiserver-job systems, where jobs require concurrent service at many servers, occur widely in practice. Essentially all of the theoretical work on multiserver-job systems focuses on maximizing utilization, with almost nothing known about mean response time. In simpler settings, such as various known-size single-server-job settings, minimizing mean response time is merely a matter of prioritizing small jobs. However, for the multiserver-job system, prioritizing small jobs is not enough, because we must also ensure servers are not unnecessarily left idle. Thus, minimizing mean response time requires prioritizing small jobs while simultaneously maximizing throughput. Our question is how to achieve these joint objectives. We devise the ServerFilling-SRPT scheduling policy, which is the first policy to minimize mean response time in the multiserver-job model in the heavy traffic limit. In addition to proving this heavy-traffic result, we present empirical evidence that ServerFilling-SRPT outperforms all existing scheduling policies for all loads, with improvements by orders of magnitude at higher loads. Because ServerFilling-SRPT requires knowing job sizes, we also define the ServerFilling-Gittins policy, which is optimal when sizes are unknown or partially known.more » « less
-
null (Ed.)The Gittins scheduling policy minimizes the mean response in the single-server M/G/1 queue in a wide variety of settings. Most famously, Gittins is optimal when preemption is allowed and service requirements are unknown but drawn from a known distribution. Gittins is also optimal much more generally, adapting to any amount of available information and any preemption restrictions. However, scheduling to minimize mean response time in a multiserver setting, specifically the central-queue M/G/k, is a much more difficult problem. In this work we give the first general analysis of Gittins in the M/G/k. Specifically, we show that under extremely general conditions, Gittins's mean response time in the M/G/k is at most its mean response time in the M/G/1 plus an $O(łog(1/(1 - ρ)))$ additive term, where ρ is the system load. A consequence of this result is that Gittins is heavy-traffic optimal in the M/G/k if the service requirement distribution S satisfies $\mathbfE [S^2(łog S)^+] < \infty$. This is the most general result on minimizing mean response time in the M/G/k to date. To prove our results, we combine properties of the Gittins policy and Palm calculus in a novel way. Notably, our technique overcomes the limitations of tagged job methods that were used in prior scheduling analyses.more » « less
-
Abstract Optimal scheduling in single-server queueing systems is a classic problem in queueing theory. The Gittins index policy is known to be the optimal nonanticipating policy minimizing the mean delay in the M/G/1 queue. While the Gittins index is thoroughly characterized for ordinary jobs whose state is described by the attained service, it is not at all the case with jobs that have more complex structure. Recently, a class of such jobs, multistage jobs, were introduced, and it was shown that the computation of Gittins index of a multistage job decomposes into separable computations for the individual stages. The characterization is, however, indirect in the sense that it relies on the recursion for an auxiliary function (the so-called SJP—single-job profit—function) and not for the Gittins index itself. In this paper, we focus on sequential multistage jobs, which have a fixed sequence of stages, and prove that, for them, it is possible to compute the Gittins index directly by recursively combining the Gittins indices of its individual stages. In addition, we give sufficient conditions for the optimality of the FCFS and SERPT disciplines for scheduling sequential multistage jobs. On the other hand, we demonstrate that, for nonsequential multistage jobs, it is better to compute the Gittins index by utilizing the SJP functions.
-
Abstract We consider the optimal scheduling problem in the M/G/1 queue. While this is a thoroughly studied problem when the target is to minimize the mean delay, there are still open questions related to some other objective functions. In this paper, we focus on minimizing mean slowdown among non-anticipating polices, which may utilize the attained service of the jobs but not their remaining service time when making scheduling decisions. By applying the Gittins index approach, we give necessary and sufficient conditions for the jobs’ service time distribution under which the well-known scheduling policies first come first served and foreground background are optimal with respect to the mean slowdown. Furthermore, we characterize the optimal non-anticipating policy in the multi-class case for certain types of service time distributions. In fact, our results cover a more general objective function than just the mean slowdown, since we allow the holding costs for a job to depend on its own service time
S via a generic functionc (S ). When minimizing the mean slowdown, this function reads as .$$c(x) = 1/x$$