skip to main content


This content will become publicly available on July 13, 2025

Title: Real-time Wing Deformation Simulations for Flying Insects
Realistic simulation of the intricate wing deformations seen in flying insects not only deepens our comprehension of insect fight mechanics but also opens up numerous applications in fields such as computer animation and virtual reality. Despite its importance, this research area has been relatively under-explored due to the complex and diverse wing structures and the intricate patterns of deformation. This paper presents an efficient skeleton-driven model specifically designed to real-time simulate realistic wing deformations across a wide range of flying insects. Our approach begins with the construction of a virtual skeleton that accurately reflects the distinct morphological characteristics of individual insect species. This skeleton serves as the foundation for the simulation of the intricate deformation wave propagation often observed in wing deformations. To faithfully reproduce the bending effect seen in these deformations, we introduce both internal and external forces that act on the wing joints, drawing on periodic wing-beat motion and a simplified aerodynamics model. Additionally, we utilize mass- spring algorithms to simulate the inherent elasticity of the wings, helping to prevent excessive twisting. Through various simulation experiments, comparisons, and user studies, we demonstrate the effectiveness, robustness, and adaptability of our model.  more » « less
Award ID(s):
2005430
PAR ID:
10532349
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400705250
Page Range / eLocation ID:
1 to 11
Subject(s) / Keyword(s):
wing deformations aerodynamics models fying insects force based simulation deformation wave propagation
Format(s):
Medium: X
Location:
Denver CO USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Small-scale flapping-wing micro air vehicles (FWMAVs) are an emerging robotic technology with many applications in areas including infrastructure monitoring and remote sensing. However, challenges such as inefficient energetics and decreased payload capacity preclude the useful implementation of FWMAVs. Insects serve as inspiration to FWMAV design owing to their energy efficiency, maneuverability, and capacity to hover. Still, the biomechanics of insects remain challenging to model, thereby limiting the translational design insights we can gather from their flight. In particular, it is not well-understood how wing flexibility impacts the energy requirements of flapping flight. In this work, we developed a simple model of an insect drive train consisting of a compliant thorax coupled to a flexible wing flapping with single-degree-of-freedom rotation in a fluid environment. We applied this model to quantify the energy required to actuate a flapping wing system with parameters based off a hawkmoth Manduca sexta. Despite its simplifications, the model predicts thorax displacement, wingtip deflection and peak aerodynamic force in proximity to what has been measured experimentally in flying moths. We found a flapping system with flexible wings requires 20% less energy than a flapping system with rigid wings while maintaining similar aerodynamic performance. Passive wing deformation increases the effective angle of rotation of the flexible wing, thereby reducing the maximum rotation angle at the base of the wing. We investigated the sensitivity of these results to parameter deviations and found that the energetic savings conferred by the flexible wing are robust over a wide range of parameters. 
    more » « less
  2. Flying insects have elastic materials within their exoskeletons that could reduce the energetic cost of flight if their wingbeat frequency is matched to a mechanical resonance frequency. Flapping at resonance may be essential across flying insects because of the power demands of small-scale flapping flight. However, building up large-amplitude resonant wingbeats over many wingstrokes may be detrimental for control if the total mechanical energy in the spring-wing system exceeds the per-cycle work capacity of the flight musculature. While the mechanics of the insect flight apparatus can behave as a resonant system, the question of whether insects flap their wings at their resonant frequency remains unanswered. Using previous measurements of body stiffness in the hawkmoth, Manduca sexta , we develop a mechanical model of spring-wing resonance with aerodynamic damping and characterize the hawkmoth's resonant frequency. We find that the hawkmoth's wingbeat frequency is approximately 80% above resonance and remains so when accounting for uncertainty in model parameters. In this regime, hawkmoths may still benefit from elastic energy exchange while enabling control of aerodynamic forces via frequency modulation. We conclude that, while insects use resonant mechanics, tuning wingbeats to a simple resonance peak is not a necessary feature for all centimetre-scale flapping flyers. 
    more » « less
  3. Flying social insects can provide model systems for in-flight interactions in computationally-constrained aerial robot swarms. The social interactions in flying insects may be chemically modulated and quantified via recent measurement advancements able to simultaneously make precise measurements of insect wing and body motions. This paper presents the first in-flight quantitative measurements of ethanol-exposed honey bee body and wing kinematics in archival literature. Four high-speed cameras (9000 frames/sec) were used to record the wing and body motions of flying insects (Apis mellifera) and automated analysis was used to extract 9000 frame/sec measurements of honey bees’ wing and body motions through data association, hull reconstruction, and segmentation. The kinematic changes induced by exposure to incremental ethanol concentrations from 0% to 5% were studied using statistical analysis tools. Analysis considered trial-wise mean and maximum values and gross wingstroke parameters, and tested deviations for statistical significance using Welch’s t-test and Cohen’s d test. The results indicate a decrease in maximal heading and pitch rates of the body, and that roll rate is affected at high concentrations (5%). The wingstroke effects include a stroke frequency decrease and stroke amplitude increase for 2.5% or greater concentrations, gradual stroke inclination angle increase up to 2.5% concentration, and a more planar wingstroke with increasing concentration according to bulk wingstroke analysis. These ethanol-exposure effects provide a basis to separate ethanol exposure and neighbor effects in chemically mediated interaction studies. 
    more » « less
  4. We present a hard-real-time multi-resolution mesh shape deformation technique for skeleton-driven soft-body characters. Producing mesh deformations at multiple levels of detail is very important in many applications in computer graphics. Our work targets applications where the multi-resolution shapes must be generated at fast speeds (“hard-real-time”, e.g., a few milliseconds at most and preferably under 1 millisecond), as commonly needed in computer games, virtual reality and Metaverse applications. We assume that the character mesh is driven by a skeleton, and that high-quality character shapes are available in a set of training poses originating from a high-quality (slow) rig such as volumetric FEM simulation. Our method combines multi-resolution analysis, mesh partition of unity, and neural networks, to learn the pre-skinning shape deformations in an arbitrary character pose. Combined with linear blend skinning, this makes it possible to reconstruct the training shapes, as well as interpolate and extrapolate them. Crucially, we simultaneously achieve this at hard real-time rates and at multiple mesh resolution levels. Our technique makes it possible to trade deformation quality for memory and computation speed, to accommodate the strict requirements of modern real-time systems. Furthermore, we propose memory layout and code improvements to boost computation speeds. Previous methods for real-time approximations of quality shape deformations did not focus on hard real-time, or did not investigate the multi-resolution aspect of the problem. Compared to a "naive" approach of separately processing each hierarchical level of detail, our method offers a substantial memory reduction as well as computational speedups. It also makes it possible to construct the shape progressively level by level and interrupt the computation at any time, enabling graceful degradation of the deformation detail. We demonstrate our technique on several examples, including a stylized human character, human hands, and an inverse-kinematics-driven quadruped animal. 
    more » « less
  5. In most instances, flapping wing robots have emulated the “synchronous” actuation of insects in which the wingbeat timing is generated from a time-dependent, rhythmic signal. The internal dynamics of asynchronous insect flight muscle enable high-frequency, adaptive wingbeats with minimal direct neural control. In this paper, we investigate how the delayed stretch-activation (dSA) response of asynchronous insect flight muscle can be transformed into a feedback control law for flapping wing robots that results in stable limit cycle wingbeats. We first demonstrate - in theory and simulation - the mechanism by which asynchronous wingbeats self-excite. Then, we implement the feedback law on a dynamically-scaled robophysical model as well as on an insect-scale robotic flapping wing. Experiments on large- and small-scale robots demonstrate good agreement with the theory results and highlight how dSA parameters govern wingbeat amplitude and frequency. Lastly, we demonstrate that asynchronous actuation has several advantages over synchronous actuation schemes, including the ability to rapidly adapt or halt wingbeats in response to external loads or collisions through low-level feedback control. 
    more » « less