skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uncertainties in temperature statistics and fluxes determined by sonic anemometers due to wind-induced vibrations of mounting arms
Abstract. Accurate air temperature measurements are essential in eddy covariance systems, not only for determining sensible heat flux but also for applying density effect corrections (DECs) to water vapor and CO2 fluxes. However, the influence of wind-induced vibrations of mounting structures on temperature fluctuations remains a subject of investigation. This study examines 30 min average temperature variances and fluxes using eddy covariance systems, combining Campbell Scientific sonic anemometers with closely co-located fine-wire thermocouples alongside LI-COR CO2–H2O gas analyzers at multiple heights above a sagebrush ecosystem. The variances of sonic temperature after humidity corrections (Ts) and sensible heat fluxes derived from Ts are underestimated (e.g., by approximately 5 % for temperature variances and 4 % for sensible heat fluxes at 40.2 m, respectively) as compared with those measured by a fine-wire thermocouple (Tc). Spectral analysis illustrates that these underestimated variances and fluxes are caused by the lower energy levels in the Ts spectra than the Tc spectra in the low-frequency range (natural frequency < 0.02 Hz). These underestimated Ts spectra in the low-frequency range become more pronounced with increasing wind speeds, especially when wind speed exceeds 10 m s−1. Moreover, the underestimated temperature variances and fluxes cause overestimated water vapor and CO2 fluxes through DEC. Our analysis suggests that these underestimations when using Ts are likely due to wind-induced vibrations affecting the tower and mounting arms, altering the time of flight of ultrasonic signals along three sonic measurement paths. This study underscores the importance of further investigations to develop corrections for these errors.  more » « less
Award ID(s):
1853354
PAR ID:
10532396
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Copernicus Publications
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
17
Issue:
13
ISSN:
1867-8548
Page Range / eLocation ID:
4109 to 4120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Long-term tall-tower eddy-covariance (EC) measurements have been recently established in three European pilot cities as part of the ICOS-Cities project. We conducted a comparison of EC software to ensure a reliable generation of interoperable flux estimates, which is the prerequisite for avoiding methodological biases and improving the comparability of the results. We analyzed datasets covering 5 months collected from EC tall-tower installations located in urbanized areas of Munich, Zurich, and Paris. Fluxes of sensible heat, latent heat, and CO2 were calculated using three software packages (i.e., TK3, EddyPro, and eddy4R) to assess the uncertainty of flux estimations attributed to differences in implemented postprocessing schemes. A very good agreement on the mean values and standard deviations was found across all three sites, which can probably be attributed to a uniform instrumentation, data acquisition, and preprocessing. The overall comparison of final flux time series products showed a good but not yet perfect agreement among the three software packages. TK3 and EddyPro both calculated fluxes with low-frequency spectral correction, resulting in better agreement than between TK3 and the eddy4R workflow with disabled low-frequency spectral treatment. These observed flux discrepancies indicate the crucial role of treating low-frequency spectral loss in flux estimation for tall-tower EC systems. 
    more » « less
  2. Abstract Top‐down entrainment shapes the vertical gradients of sensible heat, latent heat, and CO2fluxes, influencing the interpretation of eddy covariance (EC) measurements in the unstable atmospheric surface layer (ASL). Using large eddy simulations for convective boundary layer flows, we demonstrate that decreased temperature gradients across the entrainment zone increase entrainment fluxes by enhancing the entrainment velocity, amplifying the asymmetry between top‐down and bottom‐up flux contributions. These changes alter scalar flux profiles, causing flux divergence or convergence and leading to the breakdown of the constant flux layer assumption (CFLA) in the ASL. As a result, EC‐measured fluxes either underestimate or overestimate “true” surface fluxes during divergence or convergence phases, contributing to energy balance non‐closure. The varying degrees of the CFLA breakdown are a fundamental cause for the non‐closure issue. These findings highlight the underappreciated role of entrainment in interpreting EC fluxes, addressing non‐closure, and understanding site‐to‐site variability in flux measurements. 
    more » « less
  3. Abstract. Low-level flights over tundra wetlands in Alaska and Canada have beenconducted during the Airborne Measurements of Methane Emissions (AirMeth) campaigns to measure turbulent methane fluxesin the atmosphere. In this paper we describe the instrumentation and newcalibration procedures for the essential pressure parameters required forturbulence sensing by aircraft that exploit suitable regular measurementflight legs without the need for dedicated calibration patterns. We estimatethe accuracy of the mean wind and the turbulence measurements. We show thatairborne measurements of turbulent fluxes of methane and carbon dioxide usingcavity ring-down spectroscopy trace gas analysers together with establishedturbulence equipment achieve a relative accuracy similar to that ofmeasurements of sensible heat flux if applied during low-level flights overnatural area sources. The inertial subrange of the trace gas fluctuationscannot be resolved due to insufficient high-frequency precision of theanalyser, but, since this scatter is uncorrelated with the vertical windvelocity, the covariance and thus the flux are reproduced correctly. In thecovariance spectra the -7/3 drop-off in the inertial subrange can bereproduced if sufficient data are available for averaging. For convectiveconditions and flight legs of several tens of kilometres we estimate the fluxdetection limit to be about4 mg m−2 d−1 forw′CH4′‾,1.4 g m−2 d−1 for w′CO2′‾ and4.2 W m−2 for the sensible heat flux. 
    more » « less
  4. Different methods exist to measure or estimate actual crop evapotranspiration (ETa). However, some methods require a large number of data input or strict field conditions. Remote sensing based ETa algorithms based on extreme thermal pixels (hot and cold) have limitations when required extreme pixels are not present in the acquired thermal infra-red imagery. In addition, satellite overpass frequency and spatial pixel resolution may be a limitation for some agricultural fields and micro-climates. Surface energy balance methods that use surface radiometric temperatures often fail to perform well under drought, limited irrigation, salt affected soils, or under sparse vegetation conditions. One option is to measure or estimate the crop/surface sensible heat flux through the aerodynamic temperature approach, then calculate the available energy and solve the energy balance for latent heat flux. Thus, this study presents different published algorithms that characterize the crop or field surface aerodynamic temperature and then applies them to different conditions for evaluation. Determining spatial ETa continuously has the potential to improve the irrigation water management decision making. The aerodynamic temperature approach was initially developed with good results as a function of surface radiometric temperature, air temperature, crop leaf area index, and wind speed or surface aerodynamic resistance. However, the inclusion of the crop fractional percent cover and of a new resistance term (turbulent-mixing row resistance) greatly improved the estimation of the sensible heat and latent heat fluxes, when evaluated with heat flux data derived from eddy covariance energy balance towers. Results also indicate that the aerodynamic method has transferability potential to different regions, crops, and irrigation methods than the conditions encountered in the method development. 
    more » « less
  5. Abstract Among quantities of interest in paleoclimate, the mean annual air temperature, Ta, directly over the surface looms prominently. Most geologic estimates of past temperatures from continental regions, however, quantify temperatures of the soil or other material below the surface, Ts, and in general Ta < Ts. Both theory and data from the FLUXNET2015 data set of surface energy balance indicate systematic dependences of temperature differences ΔT = Ts − Ta and also of Bowen ratios—ratios of sensible to latent heat fluxes from surface to the atmosphere—on the nature of the land-surface cover. In cold regions, with mean annual temperatures ≲5 °C, latent heat flux tends to be small, and values of ΔT can be large, 3–5 °C or larger. Over wet surfaces, latent heat fluxes dominate sensible heat fluxes, and values of both ΔT and Bowen ratios commonly are small. By contrast, over arid surfaces that provide only limited moisture to the overlying atmosphere, the opposite holds. Both theory and observation suggest the following, albeit approximate, mean annual values of ΔT: for wetlands, 1 °C; forests, 1 ± 1 °C; shrublands, 3–4 °C; savannas, 3.5 °C < ΔT < 5.5 °C; grasslands, 1 °C where wet to 3 °C where arid; and deserts, 4–6 °C. As geological tools for inferring past land-surface conditions improve, these approximate values of ΔT will allow geologic estimates of past mean annual surface temperatures, Ts, to be translated into estimates of past mean annual air temperatures, Ta. 
    more » « less