- Award ID(s):
- 2413590
- PAR ID:
- 10532647
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- The Journal of Physical Chemistry Letters
- Volume:
- 14
- Issue:
- 36
- ISSN:
- 1948-7185
- Page Range / eLocation ID:
- 8235 to 8243
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The self-assembly of gold nanorods (AuNRs) of different sizes with a block copolymer (BCP) is studied. Polystyrene- block -poly(2-vinylpyridine) (PS- b -P2VP) films containing P2VP functionalized AuNRs are solvent annealed resulting in a BCP morphology of vertical P2VP cylinders in a PS matrix. At the surface of the PS- b -P2VP films long AuNRs are found in the bridging and vertical states. The bridging state is where the long axis of the AuNR is parallel to the film surface, the AuNR is embedded in the film, and each end of the AuNR is at the top of nearest neighbor P2VP cylinders. The vertical state is where the AuNR is localized within a vertical P2VP cylinder, the AuNR long axis is perpendicular to the film surface and the upper tip of the AuNR is at the film surface. Short AuNRs were found in the bridging and vertical states as well as in a state not observed for the long AuNRs, the centered state. The centered state is where an AuNR has its long axis parallel to the film surface, is embedded in the film, and is centered over a vertical P2VP cylinder. Hybrid particle-field theory (HPFT) simulations modeling the experimental system predict that for the long AuNRs only the bridging state should be observed while for the short AuNRs only the bridging and centered states should be observed. Possible explanations for why the vertical state is observed in experiments despite being thermodynamically unfavorable in simulations are discussed. HPFT simulations also show that when a nanorod is in the bridging state the two cylinders it bridges remain intact and extend from the nanorod to the substrate. Further, the minority block of the BCP is shown to wet the bottom of the bridging nanorod. The bridging state is very promising for the future development of self-assembled nanoscale devices.more » « less
-
Abstract Wastewater-based epidemiology (WBE) is a powerful tool for monitoring community disease occurrence, but current methods for bacterial detection suffer from limited scalability, the need for
a priori knowledge of the target organism, and the high degree of genetic similarity between different strains of the same species. Here, we show that surface-enhanced Raman spectroscopy (SERS) can be a scalable, label-free method for detection of bacteria in wastewater. We preferentially enhance Raman signal from bacteria in wastewater using positively-charged plasmonic gold nanorods (AuNRs) that electrostatically bind to the bacterial surface. Transmission cryoelectron microscopy (cryoEM) confirms that AuNRs bind selectively to bacteria in this wastewater matrix. We spike the bacterial speciesStaphylococcus epidermidis, Staphylococcus aureus, Serratia marcescens , andEscerichia coli and AuNRs into filter-sterilized wastewater, varying the AuNR concentration to achieve maximum signal across all pathogens. We then collect 540 spectra from each species, and train a machine learning (ML) model to identify bacterial species in wastewater. For bacterial concentrations of 109cells/mL, we achieve an accuracy exceeding 85%. We also demonstrate that this system is effective at environmentally-realistic bacterial concentrations, with a limit of bacterial detection of 104cells/mL. These results are a key first step toward a label-free, high-throughput platform for bacterial WBE. -
Gold nanorods (AuNRs) possess unique photothermal properties due to their strong plasmonic absorption in the near-infrared region of the electromagnetic spectrum. They have been explored widely as an alternative or a complement to chemotherapy in cancer treatment. However, the use of AuNRs as an injectable medicine is greatly hindered by their stability in biological media. Therefore, studies have been focused on improving the stability of AuNRs by introducing biocompatible surface functionalizations such as polyethylene glycol (PEG) coatings. However, these coatings can affect heat conduction and alter their photothermal behavior. Herein, we studied how functionalization of AuNRs with PEG chains of different molecular weights determined the temperature distribution of suspensions under near-infrared irradiation, cell uptake in vitro , and hyperthermia-induced cytotoxicity. Thermogravimetric analysis of the PEG-conjugated AuNRs exhibited slightly different PEG mass fractions of 12.0%, 12.7%, and 18.5% for PEG chains with molecular weights of 2, 5, and 10 kDa, respectively, implying distinct structures for PEG brushes. When exposed to near-infrared radiation, we found greater temperatures and temperature gradients for longer PEG chains, while rapid aggregation was observed in unmodified (raw) AuNRs. The effect of the PEG coating on heat transport was investigated using molecular dynamics simulations, which revealed the atomic scale structure of the PEG brushes and demonstrated lower thermal conductivity for PEG-coated AuNRs than for unmodified AuNRs. We also characterized the uptake of the AuNRs into mouse melanoma cells in vitro and determined their ability to kill these cells when subjected to near-infrared radiation. For all PEG-coated AuNRs, exposure to 10 s of near-infrared radiation significantly reduced cell viability relative to unirradiated controls, with this viability further decreasing with increasing AuNR doses, indicating potential phototherapeutic effects. The 5 kDa PEG coating appeared to yield the best performance, yielding significant phototoxicity at even the lowest dose considered (0.5 μg mL −1 ), while also exhibiting high colloidal stability, which could help in rational design consideration of AuNRs for NIR induced photothermal therapy.more » « less
-
The recent comment on our previously published article questioned the novelty and computational efficiency of our work. Here we respond by restating the novelty and scientific value of our work as well as showing why the specific alternative methods stated in the comment are unlikely to outperform the methods we compare for metasurface applications involving high refractive index particles near high refractive index substrates.more » « less
-
Materials and their geometry make up the tools for designing nanophotonic devices. In the past, the real part of the refractive index of materials has remained the focus for designing novel devices. The absorption, or imaginary index, was tolerated as an undesirable effect. However, a clever distribution of imaginary index of materials offers an additional degree of freedom for designing nanophotonic devices. Non-Hermitian optics provides a unique opportunity to take advantage of absorption losses in materials to enable unconventional physical effects. Typically occurring near energy degeneracies called exceptional points, these effects include enhanced sensitivity, unidirectional invisibility, and non-trivial topology. In this work, we leverage plasmonic absorption losses (or imaginary index) as a design parameter for non-Hermitian, passive parity-time symmetric metasurfaces. We show that coupled plasmonic-photonic resonator pairs, possessing a large asymmetry in absorptive losses but balanced radiative losses, exhibit an optical phase transition at an exceptional point and directional scattering. These systems enable new pathways for metasurface design using phase, symmetry, and topology as powerful tools.