We compute the multiplicity of the irreducible representations in the decomposition of the tensor product of an arbitrary number n of fundamental representations of SU(N), and we identify a duality in the representation content of this decomposition. Our method utilizes the mapping of the representations of SU(N) to the states of free fermions on the circle, and can be viewed as a random walk on a multidimensional lattice. We also derive the large-n limit and the response of the system to an external non-abelian magnetic field. These results can be used to study the phase properties of non-abelian ferromagnets and to take various scaling limits.
more »
« less
Ferromagnetic phase transitions in SU(N)
We study the thermodynamics of a non-abelian ferromagnet consisting of “atoms” each carrying a fun-damental representation of SU(N), coupled with long-range two-body quadratic interactions. We uncover a rich structure of phase transitions from non-magnetized, global SU(N)-invariant states to magnetized ones breaking global invariance to SU(N−1) ×U(1). Phases can coexist, one being stable and the other metastable, and the transition between states involves latent heat exchange, unlike in usual SU(2)ferro-magnets. Coupling the system to an external non-abelian magnetic field further enriches the phase structure, leading to additional phases. The system manifests hysteresis phenomena both in the magnetic field, as in usual ferromagnets, and in the temperature, in analogy to supercooled water. Potential applications are in fundamental situations or as a phenomenological model.
more »
« less
- Award ID(s):
- 2112729
- PAR ID:
- 10532713
- Publisher / Repository:
- Nuclear Physics B
- Date Published:
- Journal Name:
- Nuclear Physics B
- Volume:
- 996
- Issue:
- C
- ISSN:
- 0550-3213
- Page Range / eLocation ID:
- 116353
- Subject(s) / Keyword(s):
- Ferromagnetism, nonabelian, SU(N), metastability, phase transitions, hysteresis
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A two-dimensional electron system exposed to a strong magnetic field produces a plethora of strongly interacting fractional quantum Hall (FQH) states, the complex topological orders of which are revealed through exotic emergent particles, such as composite fermions, and fractionally charged Abelian and non-Abelian anyons. Much insight has been gained by the study of multicomponent FQH states, where spin and pseudospin indices of the electron contribute additional correlation. Traditional multicomponent FQH states develop in situations where the components share the same orbital states and the resulting interactions are pseudospin independent; this homo-orbital nature is also crucial to their theoretical understanding. Here, we study “hetero-orbital” two-component FQH states, in which the orbital index is part of the pseudospin, rendering the multicomponent interactions strongly SU(2) anisotropic in the pseudospin space. Such states, obtained in bilayer graphene at the isospin transition between and electron Landau levels, are markedly different from previous homo-orbital two-component FQH states. In particular, we observe strikingly different behaviors for the parallel-vortex and reverse-vortex attachment composite fermion states, and an anomalously strong two-component state over a wide range of magnetic field before it abruptly disappears at a high field. Our findings, combined with detailed theoretical calculations, reveal the surprising robustness of the hetero-orbital FQH effects, significantly enriching our understanding of FQH physics in this novel regime.more » « less
-
We derive the phase structure and thermodynamics of ferromagnets consisting of elementary magnets carrying the adjoint representation of SU(N) and coupled through two-body quadratic interactions. Such systems have a continuous SU(N) symmetry as well as a discrete conjugation symmetry. We uncover a rich spectrum of phases and transitions, involving a paramagnetic and two distinct ferromagnetic phases that can coexist as stable and metastable states in different combinations over a range of temperatures. The ferromagnetic phases break SU(N) invariance in various channels, leading to spontaneous magnetization. Interestingly, the conjugation symmetry also breaks over a range of temperatures and group ranks N, providing a realization of a spontaneously broken discrete symmetry.more » « less
-
A<sc>bstract</sc> It has long been conjectured that the largeNdeconfinement phase transition of$$ \mathcal{N} $$ = 4 SU(N) super-Yang-Mills corresponds via AdS/CFT to the Hawking-Page transition in which black holes dominate the thermal ensemble, and quantitative evidence of this has come through the recent matching of the superconformal index of$$ \frac{1}{16} $$ -BPS states to the supersymmetric black hole entropy. We introduce the half-BPS Gukov-Witten surface defect as a probe of the superconformal index, which also serves as an order parameter for the deconfinement transition. This can be studied directly in field theory as a modification of the usual unitary matrix model or in the dual description as a D3-brane probe in the background of a (complex) supersymmetric black hole. Using a saddle point approximation, we determine our defect index in the largeNlimit as a simple function of the chemical potentials and show independently that it is reproduced by the renormalized action of the brane in the black hole background. Along the way, we also comment on the Cardy limit and the thermodynamics of the D3-brane in the generalized ensemble. The defect index sharply distinguishes between the confining and the deconfining phases of the gauge theory and thus is a supersymmetric non-perturbative order parameter for these largeNphase transitions which deserves further investigation. Finally, our work provides an example where the properties of a black hole coupled to an external system can be analyzed precisely.more » « less
-
Monitored quantum circuits exhibit entanglement transitions at certain measurement rates. Such a transition separates phases characterized by how much information an observer can learn from the measurement outcomes. We study SU(2)-symmetric monitored quantum circuits, using exact numerics and a mapping onto an effective statistical-mechanics model. Due to the symmetry's non-Abelian nature, measuring qubit pairs allows for nontrivial entanglement scaling even in the measurement-only limit. We find a transition between a volume-law entangled phase and a critical phase whose diffusive purification dynamics emerge from the non-Abelian symmetry. Additionally, we identify a “spin-sharpening transition.” Across the transition, the rate at which measurements reveal information about the total spin quantum number changes parametrically with system size.more » « less
An official website of the United States government

