Fuel and restoration treatments seeking to mitigate the likelihood of uncharacteristic high‐severity wildfires in forests with historically frequent, low‐severity fire regimes are increasingly common, but long‐term treatment effects on fuels, aboveground carbon, plant community structure, ecosystem resilience, and other ecosystem attributes are understudied. We present 20‐year responses to thinning and prescribed burning treatments commonly used in dry, low‐elevation forests of the western United States from a long‐term study site in the Northern Rockies that is part of the National Fire and Fire Surrogate Study. We provide a comprehensive synthesis of short‐term (<4 years) and mid‐term (<14 years) results from previous findings. We then place these results in the context of a mountain pine beetle (MPB;
This content will become publicly available on March 1, 2025
Forest fire frequency, extent, and severity have rapidly increased in recent decades across the western United States (US) due to climate change and suppression‐oriented wildfire management. Fuels reduction treatments are an increasingly popular management tool, as evidenced by California's plan to treat 1 million acres annually by 2050. However, the aggregate efficacy of fuels treatments in dry forests at regional and multi‐decadal scales is unknown. We develop a novel fuels treatment module within a coupled dynamic vegetation and fire model to study the effects of dead biomass removal from forests in the Sierra Nevada region of California. We ask how annual treatment extent, stand‐level treatment intensiveness, and spatial treatment placement alter fire severity and live carbon loss. We find that a ∼30% reduction in stand‐replacing fire was achieved under our baseline treatment scenario of 1,000 km2 year−1after a 100‐year treatment period. Prioritizing the most fuel‐heavy stands based on precise fuel distributions yielded cumulative reductions in pyrogenic stand‐replacement of up to 50%. Both removing constraints on treatment location due to remoteness, topography, and management jurisdiction and prioritizing the most fuel‐heavy stands yielded the highest stand‐replacement rate reduction of ∼90%. Even treatments that succeeded in lowering aggregate fire severity often took multiple decades to yield measurable effects, and avoided live carbon loss remained negligible across scenarios. Our results suggest that strategically placed fuels treatments are a promising tool for controlling forest fire severity at regional, multi‐decadal scales, but may be less effective for mitigating live carbon losses.
more » « less- NSF-PAR ID:
- 10532788
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 12
- Issue:
- 3
- ISSN:
- 2328-4277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Dendroctonus ponderosae ) outbreak that impacted the site 5–10 years post‐treatment and describe 20‐year responses to assess the longevity of restoration and fuel reduction treatments in light of the MPB outbreak. Thinning treatments had persistently lower forest density and higher tree growth, but effects were more pronounced when thinning was combined with prescribed fire. The thinning+prescribed fire treatment had the additional benefit of maintaining the highest proportion of ponderosa pine (Pinus ponderosa ) for overstory and regeneration. No differences in understory native plant cover and richness or exotic species cover remained after 20 years, but exotic species richness, while low relative to native species, was still higher in the thinning+prescribed fire treatment than the control. Aboveground live carbon stocks in thinning treatments recovered to near control and prescribed fire treatment levels by 20 years. The prescribed fire treatment and control had higher fuel loads than thinning treatments due to interactions with the MPB outbreak. The MPB‐induced changes to forest structure and fuels increased the fire hazard 20 years post‐treatment in the control and prescribed fire treatment. Should a wildfire occur now, the thinning+prescribed fire treatment would likely have the lowest intensity fire and highest tree survival and stable carbon stocks. Our findings show broad support that thinning and prescribed fire increase ponderosa pine forest resilience to both wildfire and bark beetles for up to 20 years, but efficacy is waning and additional fuel treatments are needed to maintain resilience. -
Wildfire activity is increasing in boreal forests as climate warms and dries, increasing risks to rural and urban communities. In black spruce forests of Interior Alaska, fuel reduction treatments are used to create a defensible space for fire suppression and slow fire spread. These treatments introduce novel disturbance characteristics, making longer-term outcomes on ecosystem structure and wildfire risk reduction uncertain. We remeasured a network of sites where fuels were reduced through hand thinning or mechanical shearblading in Interior Alaska to assess how successional trajectories of tree dominance, understory composition, and permafrost change over ∼ 20 years after treatment. We also assessed if these fuel reduction treatments reduce modeled surface rate of fire spread (ROS), flame length, and fireline intensity relative to an untreated black spruce stand, and if surface fire behavior changes over time. In thinned areas, soil organic layer (SOL) disturbance promoted tree seedling recruitment but did not change over time. In shearbladed sites, by contrast, both conifer and broad-leaved deciduous seedling density increased over time and deciduous seedlings were 20 times more abundant than spruce. Thaw depth increased over time in both treatments and was greatest in shearbladed sites with a thin SOL. Understory composition was not altered by thinning but in shearbladed treatments shifted from forbs and horsetail to tall deciduous shrubs and grasses over time. Modeled surface fire behavior was constant in shearbladed sites. This finding is inconsistent with expert opinion, highlighting the need for additional fuels-specific data to capture the changing vegetation structure. Treatment effectiveness at reducing modeled surface ROS, flame length, and fireline intensity depended on the fuel model used for an untreated black spruce stand, pointing to uncertainties about the efficacy of these treatments at mitigating surface fire behavior. Overall, we show that fuel reduction treatments can promote low flammability, deciduous tree dominated successional trajectories, and that shearblading has strong effects on understory composition and permafrost degradation that persist for nearly two decades after disturbance. Such factors need to be considered to enhance the design, management, and predictions of fire behavior in these treatments.more » « less
-
Recent drought, wildfires and rising temperatures in the western US highlight the urgency of increasing resiliency in overstocked forests. However, limited valuation information hinders the broader participation of beneficiaries in forest management. We assessed how historical disturbances in California's Central Sierra Nevada affected live biomass, forest water use and carbon uptake and estimated marginal values of these changes. On average, low‐severity wildfire caused greater declines in forest evapotranspiration (ET), gross primary productivity (GPP) and live biomass than did commercial thinning. Low‐severity wildfires represent proxies for prescribed burns and both function as biomass removal to alleviate overstocked conditions. Increases in potential runoff over 15 years post‐disturbance were valued at $108,000/km2for commercial thinning versus $234,000/km2for low‐severity wildfire, based on historical water prices. Respective declines in GPP were valued at −$305,000 and −$1,317,000/km2, based on an average social cost of carbon. Considering biomass levels created by commercial thinning and low‐severity fire as more‐sustainable management baselines for overstocked forests, carbon uptake over 15 years post‐disturbance can be viewed as a benefit rather than loss. Realizing this benefit upon management re‐entry may require sequestering thinned material. High‐severity wildfire and clearcutting resulted in greater declines in ET and thus greater potential water benefits but also substantial declines in GPP and live carbon. These lessons from historical disturbances indicate what benefit ranges from fuels treatments can be expected from more‐sustainable management of mixed‐conifer forests and the importance of setting an appropriate baseline.more » « less
-
Abstract Black spruce forest communities in boreal Alaska have undergone self‐replacement succession following low‐to‐moderate severity fires for thousands of years. However, recent intensification of interior Alaska's fire regime, particularly deeper burning of the soil organic layer, is leading to shifts to deciduous‐dominated successional pathways, resulting in many socioecological consequences. Both fuel load quantity and quality (or “burnability”) influence black spruce plant communities' potential to burn. Even relatively low fuel loads, such as those seen in black spruce forest understory, can be highly influential drivers of fire behavior due to their high flammability. Additionally, black spruce community self‐replacement following fire can be largely attributed to the suite of functional and life history traits possessed by the species dominating these communities. We used fuel load (quantity and quality) and amount of within‐population plant trait variation (coefficient of variation; CV) as community‐level emergent properties to investigate black spruce forest vulnerability and resilience to a changing fire regime across the landscape. Our burn severity potential index (BSPI), calculated from fuel load quantity and quality measurements, indicates that drier, higher elevation stands with thicker active layers were the most vulnerable to fire‐induced vegetation shifts under a changing fire regime. Forest resilience to fire‐induced vegetation shift, represented by higher CV, was negatively associated with BSPI and greatest in ecoregions dominated by lowland black spruce forests. Together, these analyses provide critical information for determining the likelihood of stand‐replacing shifts in dominant vegetation following fire and for implementing appropriate ecosystem management practices.
-
Many coastal forests stretching from central California to southwest Oregon are threatened or have been impacted by the invasive forest pathogen Phytophthora ramorum, cause of sudden oak death. We analyzed a set of stand-level forest treatments aimed at preventing or mitigating disease impacts on stand composition, biomass, and fuels, using a before-after-control-intervention experiment with a revaluation after five years. We compared the effects of restorative management in invaded stands to preventative treatments in uninvaded forests. The restorative treatments contrasted two approaches to mastication, hand-crew thinning, and thinning with pile burning with untreated controls (N=30) while the preventative treatments were limited to hand-crew thinning (N=10). Half of the restoration treatments had basal sprouts removed two- and four-years after treatment. All treatments significantly reduced stand density and increased average tree size without significantly decreasing total basal area both immediately and five years after treatments. Preventative treatments also significantly increased dominance of timber species not susceptible to P. ramorum. Follow-up basal sprout removal in the restoration experiment appears to maintain treatment benefits to average tree size and may be associated with small decreases in stand density five years after initial treatment. Our study demonstrates that for at least five years, a range of common stand management practices can improve forests threatened or impacted by sudden oak death.more » « less