This content will become publicly available on March 1, 2025
We investigate the crescent-shaped dust trap in the transition disk Oph IRS 48 using well-resolved (sub)millimeter polarimetric observations at ALMA Band 7 (870
- PAR ID:
- 10532817
- Publisher / Repository:
- ApJ
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 963
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 134
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Crescent-shaped structures in transition disks hold the key to studying the putative companions to the central stars. The dust dynamics, especially that of different grain sizes, is important to understanding the role of pressure bumps in planet formation. In this work, we present deep dust continuum observation with high resolution toward the Oph IRS 48 system. For the first time, we are able to significantly trace and detect emission along 95% of the ring crossing the crescent-shaped structure. The ring is highly eccentric with an eccentricity of 0.27. The flux density contrast between the peak of the flux and its counterpart along the ring is ∼270. In addition, we detect a compact emission toward the central star. If the emission is an inner circumstellar disk inside the cavity, it has a radius of at most a couple of astronomical units with a dust mass of 1.5 × 10 −8 M ⊙ , or 0.005 M ⊕ . We also discuss the implications of the potential eccentric orbit on the proper motion of the crescent, the putative secondary companion, and the asymmetry in velocity maps.more » « less
-
ABSTRACT The gamma-ray emitting narrow-line Seyfert 1 galaxies are a unique class of objects that launch powerful jets from relatively lower-mass black hole systems compared to the Blazars. However, the black hole masses estimated from the total flux spectrum suffer from the projection effect, making the mass measurement highly uncertain. The polarized spectrum provides a unique view of the central engine through scattered light. We performed spectropolarimetric observations of the gamma-ray emitting narrow-line Seyfert 1 galaxy 1H0323 + 342 using SPOL/MMT. The degree of polarization and polarization angle are 0.122 $\pm$ 0.040 per cent and 142 $\pm$ 9 degrees, while the H $\alpha$ line is polarized at 0.265 $\pm$ 0.280 per cent. We decomposed the total flux spectrum and estimated broad H $\alpha$ full width at half maximum of 1015 km s$^{-1}$. The polarized flux spectrum shows a broadening similar to the total flux spectrum, with a broadening ratio of 1.22. The Monte Carlo radiative transfer code ‘STOKES’ applied to the data provides the best fit for a small viewing angle of 9–24 deg and a small optical depth ratio between the polar and the equatorial scatters. A thick broad-line region with significant scale height can explain a similar broadening of the polarized spectrum compared to the total flux spectrum with a small viewing angle.
-
null (Ed.)Conductive and transparent coatings consisting of silver nanowires (AgNWs) are promising candidates for emerging flexible electronics applications. Coatings of aligned AgNWs offer unusual electronic and optical anisotropies, with potential for use in micro-circuits, antennas, and polarization sensors. Here we explore a microfluidics setup and flow-induced alignment mechanisms to create centimeter-scale highly conductive coatings of aligned AgNWs with order parameters reaching 0.84, leading to large electrical and optical anisotropies. By varying flow rates, we establish the relationship between the shear rate and the alignment and investigate possible alignment mechanisms. The angle-dependent sheet resistance of the aligned AgNW networks exhibits an electronic transport anisotropy of ∼10× while maintaining low resistivity (<50 Ω sq −1 ) in all directions. When illuminated, the aligned AgNW coatings exhibit angle- and polarization-dependent colors, and the polarized reflection anisotropy can be as large as 25. This large optical anisotropy is due to a combination of alignment, polarization response, and angle-dependent scattering of the aligned AgNWs.more » « less
-
Abstract We present 870
μ m Atacama Large Millimeter/submillimeter Array polarization observations of thermal dust emission from the iconic, edge-on debris diskβ Pic. While the spatially resolved map does not exhibit detectable polarized dust emission, we detect polarization at the ∼3σ level when averaging the emission across the entire disk. The corresponding polarization fraction isP frac= 0.51% ± 0.19%. The polarization position angleχ is aligned with the minor axis of the disk, as expected from models of dust grains aligned via radiative alignment torques (RAT) with respect to a toroidal magnetic field (B -RAT) or with respect to the anisotropy in the radiation field (k -RAT). When averaging the polarized emission across the outer versus inner thirds of the disk, we find that the polarization arises primarily from the SW third. We perform synthetic observations assuming grain alignment via bothk -RAT andB -RAT. Both models produce polarization fractions close to our observed value when the emission is averaged across the entire disk. When we average the models in the inner versus outer thirds of the disk, we find thatk -RAT is the likely mechanism producing the polarized emission inβ Pic. A comparison of timescales relevant to grain alignment also yields the same conclusion. For dust grains with realistic aspect ratios (i.e.,s > 1.1), our models imply low grain-alignment efficiencies. -
Abstract Lithospheric seismic anisotropy illuminates mid‐ocean ridge dynamics and the thermal evolution of oceanic plates. We utilize short‐period (5–7.5 s) ambient‐noise surface waves and 15‐ to 150‐s Rayleigh waves measured across the NoMelt ocean‐bottom array to invert for the complete radial and azimuthal anisotropy in the upper ∼35 km of ∼70‐Ma Pacific lithospheric mantle, and azimuthal anisotropy through the underlying asthenosphere. Strong azimuthal variations in Rayleigh‐ and Love‐wave velocity are observed, including the first clearly measured Love‐wave 2
θ and 4θ variations. Inversion of averaged dispersion requires radial anisotropy in the shallow mantle (2‐3%) and the lower crust (4‐5%), with horizontal velocities (V S H ) faster than vertical velocities (V S V ). Azimuthal anisotropy is strong in the mantle, with 4.5–6% 2θ variation inV S V with fast propagation parallel to the fossil‐spreading direction (FSD), and 2–2.5% 4θ variation inV S H with a fast direction 45° from FSD. The relative behavior of 2θ , 4θ , and radial anisotropy in the mantle are consistent with ophiolite petrofabrics, linking outcrop and surface‐wave length scales.V S V remains fast parallel to FSD to ∼80 km depth where the direction changes, suggesting spreading‐dominated deformation at the ridge. The transition at ∼80 km perhaps marks the dehydration boundary and base of the lithosphere. Azimuthal anisotropy strength increases from the Moho to ∼30 km depth, consistent with flow models of passive upwelling at the ridge. Strong azimuthal anisotropy suggests extremely coherent olivine fabric. Weaker radial anisotropy implies slightly nonhorizontal fabric or the presence of alternative (so‐called E‐type) peridotite fabric. Presence of radial anisotropy in the crust suggests subhorizontal layering and/or shearing during crustal accretion.