We propose a new variant of the top arm identification problem, top feasible arm identification, where there are K arms associated with D-dimensional distributions and the goal is to find m arms that maximize some known linear function of their means subject to the constraint that their means belong to a given set P € R D. This problem has many applications since in many settings, feedback is multi-dimensional and it is of interest to perform constrained maximization. We present problem-dependent lower bounds for top feasible arm identification and upper bounds for several algorithms. Our most broadly applicable algorithm, TF-LUCB-B, has an upper bound that is loose by a factor of OpDlogpKqq. Many problems of practical interest are two dimensional and, for these, it is loose by a factor of OplogpKqq. Finally, we conduct experiments on synthetic and real-world datasets that demonstrate the effectiveness of our algorithms. Our algorithms are superior both in theory and in practice to a naive two-stage algorithm that first identifies the feasible arms and then applies a best arm identification algorithm to the feasible arms.
more »
« less
Robust Outlier Arm Identification
We study the problem of Robust Outlier Arm Identification (ROAI), where the goal is to identify arms whose expected rewards deviate substantially from the majority, by adaptively sampling from their reward distributions. We compute the outlier threshold using the median and median absolute deviation of the expected rewards. This is a robust choice for the threshold compared to using the mean and standard deviation, since it can identify outlier arms even in the presence of extreme outlier values. Our setting is different from existing pure exploration problems where the threshold is pre-specified as a given value or rank. This is useful in applications where the goal is to identify the set of promising items but the cardinality of this set is unknown, such as finding promising drugs for a new disease or identifying items favored by a population. We propose two 𝛿 -PAC algorithms for ROAI, which includes the first UCB-style algorithm for outlier detection, and derive upper bounds on their sample complexity. We also prove a matching, up to logarithmic factors, worst case lower bound for the problem, indicating that our upper bounds are generally unimprovable. Experimental results show that our algorithms are both robust and about 5 x sample efficient compared to state-of-the-art.
more »
« less
- Award ID(s):
- 2023239
- PAR ID:
- 10533121
- Publisher / Repository:
- International Conference on Machine Learning
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The level set estimation problem seeks to find all points in a domain where the value of an unknown function 𝑓:→ℝ exceeds a threshold 𝛼 . The estimation is based on noisy function evaluations that may be acquired at sequentially and adaptively chosen locations in . The threshold value 𝛼 can either be explicit and provided a priori, or implicit and defined relative to the optimal function value, i.e. 𝛼=(1−𝜖)𝑓(𝐱∗) for a given 𝜖>0 where 𝑓(𝐱∗) is the maximal function value and is unknown. In this work we provide a new approach to the level set estimation problem by relating it to recent adaptive experimental design methods for linear bandits in the Reproducing Kernel Hilbert Space (RKHS) setting. We assume that 𝑓 can be approximated by a function in the RKHS up to an unknown misspecification and provide novel algorithms for both the implicit and explicit cases in this setting with strong theoretical guarantees. Moreover, in the linear (kernel) setting, we show that our bounds are nearly optimal, namely, our upper bounds match existing lower bounds for threshold linear bandits. To our knowledge this work provides the first instance-dependent, non-asymptotic upper bounds on sample complexity of level-set estimation that match information theoretic lower bounds.more » « less
-
This paper is devoted to the statistical properties of the geometric median, a robust measure of centrality for multivariate data, as well as its applications to the problem of mean estimation via the median of means principle. Our main theoretical results include (a) the upper bound for the distance between the mean and the median for general absolutely continuous distributions in $$\mathbb R^d$$, and examples of specific classes of distributions for which these bounds do not depend on the ambient dimension $$d$$; (b) exponential deviation inequalities for the distance between the sample and the population versions of the geometric median, which again depend only on the trace-type quantities and not on the ambient dimension. As a corollary, we deduce the improved bounds for the multivariate median of means estimator that hold for large classes of heavy-tailed distributions.more » « less
-
In many real-world applications, multiple agents seek to learn how to perform highly related yet slightly different tasks in an online bandit learning protocol. We formulate this problem as the ϵ-multi-player multi-armed bandit problem, in which a set of players concurrently interact with a set of arms, and for each arm, the reward distributions for all players are similar but not necessarily identical. We develop an upper confidence bound-based algorithm, RobustAgg(ϵ), that adaptively aggregates rewards collected by different players. In the setting where an upper bound on the pairwise dissimilarities of reward distributions between players is known, we achieve instance-dependent regret guarantees that depend on the amenability of information sharing across players. We complement these upper bounds with nearly matching lower bounds. In the setting where pairwise dissimilarities are unknown, we provide a lower bound, as well as an algorithm that trades off minimax regret guarantees for adaptivity to unknown similarity structure.more » « less
-
We consider message-efficient continuous random sampling from a distributed stream, where the probability of inclusion of an item in the sample is proportional to a weight associated with the item. The unweighted version, where all weights are equal, is well studied, and admits tight upper and lower bounds on message complexity. For weighted sampling with replacement, there is a simple reduction to unweighted sampling with replacement. However, in many applications the stream may have only a few heavy items which may dominate a random sample when chosen with replacement. Weighted sampling without replacement (weighted SWOR) eludes this issue, since such heavy items can be sampled at most once. In this work, we present the first message-optimal algorithm for weighted SWOR from a distributed stream. Our algorithm also has optimal space and time complexity. As an application of our algorithm for weighted SWOR, we derive the first distributed streaming algorithms for tracking heavy hitters with residual error. Here the goal is to identify stream items that contribute significantly to the residual stream, once the heaviest items are removed. Residual heavy hitters generalize the notion of $$\ell_1$$ heavy hitters and are important in streams that have a skewed distribution of weights. In addition to the upper bound, we also provide a lower bound on the message complexity that is nearly tight up to a $$łog(1/\eps)$$ factor. Finally, we use our weighted sampling algorithm to improve the message complexity of distributed $$L_1$$ tracking, also known as count tracking, which is a widely studied problem in distributed streaming. We also derive a tight message lower bound, which closes the message complexity of this fundamental problem.more » « less
An official website of the United States government

