skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development and validation of a nonverbal consensus-based semantic memory paradigm in patients with epilepsy
Objective: Brain areas implicated in semantic memory can be damaged in patients with epilepsy (PWE). However, it is challenging to delineate semantic processing deficits from acoustic, linguistic, and other verbal aspects in current neuropsychological assessments. We developed a new Visual-based Semantic Association Task (ViSAT) to evaluate nonverbal semantic processing in PWE. Method: The ViSAT was adapted from similar predecessors (Pyramids & Palm Trees test, PPT; Camels & Cactus Test, CCT) comprised of 100 unique trials using real-life color pictures that avoid demographic, cultural, and other potential confounds. We obtained performance data from 23 PWE participants and 24 control participants (Control), along with crowdsourced normative data from 54 Amazon Mechanical Turk (Mturk) workers. Results: ViSAT reached a consensus >90% in 91.3% of trials compared to 83.6% in PPT and 82.9% in CCT. A deep learning model demonstrated that visual features of the stimulus images (color, shape; i.e., non-semantic) did not influence top answer choices (p = 0.577). The PWE group had lower accuracy than the Control group (p = 0.019). PWE had longer response times than the Control group in general and this was augmented for the semantic processing (trial answer) stage (both p < 0.001). Conclusions: This study demonstrated performance impairments in PWE that may reflect dysfunction of nonverbal semantic memory circuits, such as seizure onset zones overlapping with key semantic regions (e.g., anterior temporal lobe). The ViSAT paradigm avoids confounds, is repeatable/longitudinal, captures behavioral data, and is open-source, thus we propose it as a strong alternative for clinical and research assessment of nonverbal semantic memory.  more » « less
Award ID(s):
2148753
PAR ID:
10533743
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of the International Neuropsychological Society
ISSN:
1355-6177
Page Range / eLocation ID:
1 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Increasing evidence suggests that specific memory systems (e.g., semantic vs. episodic) may support specific creative thought processes. However, there are a number of inconsistencies in the literature regarding the strength, direction, and influence of different memory (semantic, episodic, working, and short-term) and creativity (divergent and convergent thinking) types, as well as the influence of external factors (age, stimuli modality) on this purported relationship. In this meta-analysis, we examined 525 correlations from 79 published studies and unpublished datasets, representing data from 12,846 individual participants. We found a small but significant (r = .19) correlation between memory and creative cognition. Among semantic, episodic, working, and short-term memory, all correlations were significant, but semantic memory – particularly verbal fluency, the ability to strategically retrieve information from long-term memory – was found to drive this relationship. Further, working memory capacity was found to be more strongly related to convergent than divergent creative thinking. We also found that within visual creativity, the relationship with visual memory was greater than that of verbal memory, but within verbal creativity, the relationship with verbal memory was greater than that of visual memory. Finally, the memory-creativity correlation was larger for children compared to young adults despite no impact of age on the overall effect size. These results yield three key conclusions: (1) semantic memory supports both verbal and nonverbal creative thinking, (2) working memory supports convergent creative thinking, and (3) the cognitive control of memory is central to performance on creative thinking tasks. 
    more » « less
  2. Abstract Selective attention improves sensory processing of relevant information but can also impact the quality of perception. For example, attention increases visual discrimination performance and at the same time boosts apparent stimulus contrast of attended relative to unattended stimuli. Can attention also lead to perceptual distortions of visual representations? Optimal tuning accounts of attention suggest that processing is biased towards “off-tuned” features to maximize the signal-to-noise ratio in favor of the target, especially when targets and distractors are confusable. Here, we tested whether such tuning gives rise to phenomenological changes of visual features. We instructed participants to select a color among other colors in a visual search display and subsequently asked them to judge the appearance of the target color in a 2-alternative forced choice task. Participants consistently judged the target color to appear more dissimilar from the distractor color in feature space. Critically, the magnitude of these perceptual biases varied systematically with the similarity between target and distractor colors during search, indicating that attentional tuning quickly adapts to current task demands. In control experiments we rule out possible non-attentional explanations such as color contrast or memory effects. Overall, our results demonstrate that selective attention warps the representational geometry of color space, resulting in profound perceptual changes across large swaths of feature space. Broadly, these results indicate that efficient attentional selection can come at a perceptual cost by distorting our sensory experience. 
    more » « less
  3. The Leiter International Performance Scale-Revised (Leiter-R) is a standardized cognitive test that seeks to "provide a nonverbal measure of general intelligence by sampling a wide variety of functions from memory to nonverbal reasoning." Understanding the computational building blocks of nonverbal cognition, as measured by the Leiter-R, is an important step towards understanding human nonverbal cognition, especially with respect to typical and atypical trajectories of child development. One subtest of the Leiter-R, Form Completion, involves synthesizing and localizing a visual figure from its constituent slices. Form Completion poses an interesting nonverbal problem that seems to combine several aspects of visual memory, mental rotation, and visual search. We describe a new computational cognitive model that addresses Form Completion using a novel, mental-rotation-friendly image representation that we call the Polar Augmented Resolution (PolAR) Picture, which enables high-fidelity mental rotation operations. We present preliminary results using actual Leiter-R test items and discuss directions for future work. 
    more » « less
  4. null (Ed.)
    Previous evidence demonstrated that individuals can recall a target’s location in a search display even if location information is completely task-irrelevant. This finding raises the question: does this ability to automatically encode a single item’s location into a reportable memory trace extend to other aspects of spatial information as well? We tested this question using a paradigm designed to elicit attribute amnesia (Chen & Wyble, 2015a). Participants were initially asked to report the location of a target letter among digits with stimuli arranged to form one of two or four spatial configurations varying randomly across trials. After completing numerous trials that matched their expectations, participants were surprised with a series of unexpected questions probing their memory for various aspects of the display they had just viewed. Participants had a profound inability to report which spatial configuration they had just perceived when the target’s location was not unique to a specific configuration (i.e., orthogonal). Despite being unable to report the most recent configuration, answer choices on the surprise trial were focused around previously seen configurations, rather than novel configurations. Thus, there were clear memories of the set of configurations that had been viewed during the experiment but not of the specific configuration from the most recent trial. This finding helps to set boundary conditions on previous findings regarding the automatic encoding of location information into memory. 
    more » « less
  5. Standard learning assessments like multiple-choice questions measure what students know but not how their knowledge is organized. Recent advances in cognitive network science provide quantitative tools for modeling the structure of semantic memory, revealing key learning mechanisms. In two studies, we examined the semantic memory networks of undergraduate students enrolled in an introductory psychology course. In Study 1, we administered a cumulative multiple-choice test of psychology knowledge, the Intro Psych Test, at the end of the course. To estimate semantic memory networks, we administered two verbal fluency tasks: domain-specific fluency (naming psychology concepts) and domain-general fluency (naming animals). Based on their performance on the Intro Psych Test, we categorized students into a high-knowledge or low-knowledge group, and compared their semantic memory networks. Study 1 (N = 213) found that the high-knowledge group had semantic memory networks that were more clustered, with shorter distances between concepts—across both the domain-specific (psychology) and domain-general (animal) categories—compared to the low-knowledge group. In Study 2 (N = 145), we replicated and extended these findings in a longitudinal study, collecting data near the start and end of the semester. In addition to replicating Study 1, we found the semantic memory networks of high-knowledge students became more interconnected over time, across both domain-general and domain-specific categories. These findings suggest that successful learners show a distinct semantic memory organization—characterized by high connectivity and short path distances between concepts—highlighting the utility of cognitive network science for studying variation in student learning. 
    more » « less