skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probabilities of Causation with Nonbinary Treatment and Effect
This paper deals with the problem of estimating the probabilities of causation when treatment and effect are not binary. Tian and Pearl derived sharp bounds for the probability of necessity and sufficiency (PNS), the probability of sufficiency (PS), and the probability of necessity (PN) using experimental and observational data. In this paper, we provide theoretical bounds for all types of probabilities of causation to multivalued treatments and effects. We further discuss examples where our bounds guide practical decisions and use simulation studies to evaluate how informative the bounds are for various combinations of data.  more » « less
Award ID(s):
2321786
PAR ID:
10534081
Author(s) / Creator(s):
;
Publisher / Repository:
{AAAI} Press
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The non‐asymptotic tail bounds of random variables play crucial roles in probability, statistics, and machine learning. Despite much success in developing upper bounds on tail probabilities in literature, the lower bounds on tail probabilities are relatively fewer. In this paper, we introduce systematic and user‐friendly schemes for developing non‐asymptotic lower bounds of tail probabilities. In addition, we develop sharp lower tail bounds for the sum of independent sub‐Gaussian and sub‐exponential random variables, which match the classic Hoeffding‐type and Bernstein‐type concentration inequalities, respectively. We also provide non‐asymptotic matching upper and lower tail bounds for a suite of distributions, including gamma, beta, (regular, weighted, and noncentral) chi‐square, binomial, Poisson, Irwin–Hall, etc. We apply the result to establish the matching upper and lower bounds for extreme value expectation of the sum of independent sub‐Gaussian and sub‐exponential random variables. A statistical application of signal identification from sparse heterogeneous mixtures is finally considered. 
    more » « less
  2. Probabilistic programs often trade accuracy for efficiency, and thus may, with a small probability, return an incorrect result. It is important to obtain precise bounds for the probability of these errors, but existing verification approaches have limitations that lead to error probability bounds that are excessively coarse, or only apply to first-order programs. In this paper we present Eris, a higher-order separation logic for proving error probability bounds for probabilistic programs written in an expressive higher-order language. Our key novelty is the introduction of error credits, a separation logic resource that tracks an upper bound on the probability that a program returns an erroneous result. By representing error bounds as a resource, we recover the benefits of separation logic, including compositionality, modularity, and dependency between errors and program terms, allowing for more precise specifications. Moreover, we enable novel reasoning principles such as expectation-preserving error composition, amortized error reasoning, and error induction. We illustrate the advantages of our approach by proving amortized error bounds on a range of examples, including collision probabilities in hash functions, which allow us to write more modular specifications for data structures that use them as clients. We also use our logic to prove correctness and almost-sure termination of rejection sampling algorithms. All of our results have been mechanized in the Coq proof assistant using the Iris separation logic framework and the Coquelicot real analysis library. 
    more » « less
  3. null (Ed.)
    In this paper, we propose polynomial forms to represent distributions of state variables over time for discrete-time stochastic dynamical systems. This problem arises in a variety of applications in areas ranging from biology to robotics. Our approach allows us to rigorously represent the probability distribution of state variables over time, and provide guaranteed bounds on the expectations, moments and probabilities of tail events involving the state variables. First we recall ideas from interval arithmetic, and use them to rigorously represent the state variables at time t as a function of the initial state variables and noise symbols that model the random exogenous inputs encountered before time t. Next we show how concentration of measure inequalities can be employed to prove rigorous bounds on the tail probabilities of these state variables. We demonstrate interesting applications that demonstrate how our approach can be useful in some situations to establish mathematically guaranteed bounds that are of a different nature from those obtained through simulations with pseudo-random numbers. 
    more » « less
  4. In this paper, we propose polynomial forms to represent distributions of state variables over time for discrete-time stochastic dynamical systems. This problem arises in a variety of applications in areas ranging from biology to robotics. Our approach allows us to rigorously represent the probability distribution of state variables over time, and provide guaranteed bounds on the expectations, moments and probabilities of tail events involving the state variables. First, we recall ideas from interval arithmetic, and use them to rigorously represent the state variables at time t as a function of the initial state variables and noise symbols that model the random exogenous inputs encountered before time t. Next, we show how concentration of measure inequalities can be employed to prove rigorous bounds on the tail probabilities of these state variables. We demonstrate interesting applications that demonstrate how our approach can be useful in some situations to establish mathematically guaranteed bounds that are of a different nature from those obtained through simulations with pseudo-random numbers. 
    more » « less
  5. In general, obtaining the exact steady-state distribution of queue lengths is not feasible. Therefore, we focus on establishing bounds for the tail probabilities of queue lengths. We examine queueing systems under Heavy Traffic (HT) conditions and provide exponentially decaying bounds for the probability P(∈q > x), where ∈ is the HT parameter denoting how far the load is from the maximum allowed load. Our bounds are not limited to asymptotic cases and are applicable even for finite values of ∈, and they get sharper as ∈ - 0. Consequently, we derive non-asymptotic convergence rates for the tail probabilities. Furthermore, our results offer bounds on the exponential rate of decay of the tail, given by -1/2 log P(∈q > x) for any finite value of x. These can be interpreted as non-asymptotic versions of Large Deviation (LD) results. To obtain our results, we use an exponential Lyapunov function to bind the moment-generating function of queue lengths and apply Markov's inequality. We demonstrate our approach by presenting tail bounds for a continuous time Join-the-shortest queue (JSQ) system. 
    more » « less