skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accounting for Travel Time and Arrival Time Coordination During Task Allocations in Legged-Robot Teams
Many applications require the deployment of legged-robot teams to effectively and efficiently carry out missions. The use of multiple robots allows tasks to be executed concurrently, expediting mission completion. It also enhances resilience by enabling task transfer in case of a robot failure. This paper presents a formulation based on Mixed Integer Linear Programming (MILP) for allocating tasks to robots by taking into account travel time and ensuring efficient execution of collaborative tasks. We extended the MILP formulation to account for complexities with legged robot teams. Our results demonstrate that this approach leads to improved performance in terms of the makespan of the mission. We demonstrate the usefulness of this approach using a case study involving the disinfection of a building consisting of multiple rooms.  more » « less
Award ID(s):
2133091
PAR ID:
10534285
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-8457-4
Page Range / eLocation ID:
16588 to 16594
Format(s):
Medium: X
Location:
Yokohama, Japan
Sponsoring Org:
National Science Foundation
More Like this
  1. Sensor coverage is the critical multi-robot problem of maximizing the detection of events in an environment through the deployment of multiple robots. Large multi-robot systems are often composed of simple robots that are typically not equipped with a complete set of sensors, so teams with comprehensive sensing abilities are required to properly cover an area. Robots also exhibit multiple forms of relationships (e.g., communication connections or spatial distribution) that need to be considered when assigning robot teams for sensor coverage. To address this problem, in this paper we introduce a novel formulation of sensor coverage by multi-robot systems with heterogeneous relationships as a graph representation learning problem. We propose a principled approach based on the mathematical framework of regularized optimization to learn a unified representation of the multi-robot system from the graphs describing the heterogeneous relationships and to identify the learned representation’s underlying structure in order to assign the robots to teams. To evaluate the proposed approach, we conduct extensive experiments on simulated multi-robot systems and a physical multi-robot system as a case study, demonstrating that our approach is able to effectively assign teams for heterogeneous multi-robot sensor coverage. 
    more » « less
  2. Legged robots have shown remarkable advantages in navigating uneven terrain. However, realizing effective loco-motion and manipulation tasks on quadruped robots is still challenging. In addition, object and terrain parameters are generally unknown to the robot in these problems. Therefore, this paper proposes a hierarchical adaptive control framework that enables legged robots to perform loco-manipulation tasks without any given assumption on the object's mass, the friction coefficient, or the slope of the terrain. In our approach, we first present an adaptive manipulation control to regulate the contact force to manipulate an unknown object on unknown terrain. We then introduce a unified model predictive control (MPC) for loco-manipulation that takes into account the manipulation force in our robot dynamics. The proposed MPC framework thus can effectively regulate the interaction force between the robot and the object while keeping the robot balance. Experimental validation of our proposed approach is successfully conducted on a Unitree A1 robot, allowing it to manipulate an unknown time-varying load up to 7 kg (60% of the robot's weight). Moreover, our framework enables fast adaptation to unknown slopes or different surfaces with different friction coefficients. 
    more » « less
  3. Collaborative robots promise to transform work across many industries and promote “human-robot teaming” as a novel paradigm. However, realizing this promise requires the understanding of how existing tasks, developed for and performed by humans, can be effectively translated into tasks that robots can singularly or human-robot teams can collaboratively perform. In the interest of developing tools that facilitate this process we present Authr, an end-to-end task authoring environment that assists engineers at manufacturing facilities in translating existing manual tasks into plans applicable for human-robot teams and simulates these plans as they would be performed by the human and robot. We evaluated Authr with two user studies, which demonstrate the usability and effectiveness of Authr as an interface and the benefits of assistive task allocation methods for designing complex tasks for human-robot teams. We discuss the implications of these findings for the design of software tools for authoring human-robot collaborative plans. 
    more » « less
  4. Abstract Trajectory planning for multiple robots in shared environments is a challenging problem especially when there is limited communication available or no central entity. In this article, we present Real-time planning using Linear Spatial Separations, or RLSS: a real-time decentralized trajectory planning algorithm for cooperative multi-robot teams in static environments. The algorithm requires relatively few robot capabilities, namely sensing the positions of robots and obstacles without higher-order derivatives and the ability of distinguishing robots from obstacles. There is no communication requirement and the robots’ dynamic limits are taken into account. RLSS generates and solves convex quadratic optimization problems that are kinematically feasible and guarantees collision avoidance if the resulting problems are feasible. We demonstrate the algorithm’s performance in real-time in simulations and on physical robots. We compare RLSS to two state-of-the-art planners and show empirically that RLSS does avoid deadlocks and collisions in forest-like and maze-like environments, significantly improving prior work, which result in collisions and deadlocks in such environments. 
    more » « less
  5. Legged robots have the advantage of being able to maneuver rough, unstructured terrains unlike their wheeled counterparts. However, many legged robots require multiple sensors and online computations to specify the gait, trajectory or contact forces in real-time for a given terrain, and these methods can break down when sensory information is unreliable or not available. Over the years, underactuated mechanisms have demonstrated great success in object grasping and manipulation tasks due to their ability to passively adapt to the geometry of the objects without sensors. In this paper, we present an application of underactuation in the design of a legged robot with prismatic legs that maneuvers unstructured terrains under open-loop control using only four actuators – one for stance for each half of the robot, one for forward translation, and one for steering. Through experimental results, we show that prismatic legs can support a statically stable stance and can facilitate locomotion over unstructured terrain while maintaining its body posture. 
    more » « less