Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In recent years, the field of legged robotics has seen growing interest in enhancing the capabilities of these robots through the integration of articulated robotic arms. However, achieving successful loco-manipulation, especially involving interaction with heavy objects, is far from straightforward, as object manipulation can introduce substantial disturbances that impact the robot’s locomotion. This paper presents a novel framework for legged loco-manipulation that considers whole-body coordination through a hierarchical optimization-based control framework. First, an online manipulation planner computes the manipulation forces and manipulated object task-based reference trajectory. Then, pose optimization aligns the robot’s trajectory with kinematic constraints. The resultant robot reference trajectory is executed via a linear MPC controller incorporating the desired manipulation forces into its prediction model. Our approach has been validated in simulation and hardware experiments, highlighting the necessity of whole-body optimization compared to the baseline locomotion MPC when interacting with heavy objects. Experimental results with Unitree Aliengo, equipped with a custom-made robotic arm, showcase its ability to lift and carry an 8kg payload and manipulate doors.more » « less
-
Many applications require the deployment of legged-robot teams to effectively and efficiently carry out missions. The use of multiple robots allows tasks to be executed concurrently, expediting mission completion. It also enhances resilience by enabling task transfer in case of a robot failure. This paper presents a formulation based on Mixed Integer Linear Programming (MILP) for allocating tasks to robots by taking into account travel time and ensuring efficient execution of collaborative tasks. We extended the MILP formulation to account for complexities with legged robot teams. Our results demonstrate that this approach leads to improved performance in terms of the makespan of the mission. We demonstrate the usefulness of this approach using a case study involving the disinfection of a building consisting of multiple rooms.more » « less
-
Agile-legged robots have proven to be highly effective in navigating and performing tasks in complex and challenging environments, including disaster zones and industrial settings. However, these applications commonly require the capability of carrying heavy loads while maintaining dynamic motion. Therefore, this article presents a novel methodology for incorporating adaptive control into a force-based control system. Recent advancements in the control of quadruped robots show that force control can effectively realize dynamic locomotion over rough terrain. By integrating adaptive control into the force-based controller, our proposed approach can maintain the advantages of the baseline framework while adapting to significant model uncertainties and unknown terrain impact models. Experimental validation was successfully conducted on the Unitree A1 robot. With our approach, the robot can carry heavy loads (up to 50% of its weight) while performing dynamic gaits such as fast trotting and bounding across uneven terrains.more » « less
-
Abstract Legged robots have a unique capability of traversing rough terrains and negotiating cluttered environments. Recent control development of legged robots has enabled robust locomotion on rough terrains. However, such approaches mainly focus on maintaining balance for the robot body. In this work, we are interested in leveraging the whole body of the robot to pass through a permeable obstacle (e.g., a small confined opening) with height, width, and terrain constraints. This paper presents a planning framework for legged robots manipulating their body and legs to perform collision-free locomotion through a permeable obstacle. The planner incorporates quadrupedal gait constraint, biasing scheme, and safety margin for the simultaneous body and foothold motion planning. We perform informed sampling for the body poses and swing foot position based on the gait constraint while ensuring stability and collision avoidance. The footholds are planned based on the terrain and the contact constraint. We also integrate the planner with robot control to execute the planned trajectory successfully. We validated our approach in high-fidelity simulation and hardware experiments on the Unitree A1 robot navigating through different representative permeable obstacles.more » « less
-
Hierarchical Adaptive Control for Collaborative Manipulation of a Rigid Object by Quadrupedal RobotsDespite the potential benefits of collaborative robots, effective manipulation tasks with quadruped robots remain difficult to realize. In this paper, we propose a hierarchical control system that can handle real-world collaborative manipulation tasks, including uncertainties arising from object properties, shape, and terrain. Our approach consists of three levels of controllers. Firstly, an adaptive controller computes the required force and moment for object manipulation without prior knowledge of the object's properties and terrain. The computed force and moment are then optimally distributed between the team of quadruped robots using a Quadratic Programming (QP)-based controller. This QP-based controller optimizes each robot's contact point location with the object while satisfying constraints associated with robot-object contact. Finally, a decentralized loco-manipulation controller is designed for each robot to apply manipulation force while maintaining the robot's stability. We successfully validated our approach in a high-fidelity simulation environment where a team of quadruped robots manipulated an unknown object weighing up to 18 kg on different terrains while following the desired trajectory.more » « less
-
Legged robots have shown remarkable advantages in navigating uneven terrain. However, realizing effective loco-motion and manipulation tasks on quadruped robots is still challenging. In addition, object and terrain parameters are generally unknown to the robot in these problems. Therefore, this paper proposes a hierarchical adaptive control framework that enables legged robots to perform loco-manipulation tasks without any given assumption on the object's mass, the friction coefficient, or the slope of the terrain. In our approach, we first present an adaptive manipulation control to regulate the contact force to manipulate an unknown object on unknown terrain. We then introduce a unified model predictive control (MPC) for loco-manipulation that takes into account the manipulation force in our robot dynamics. The proposed MPC framework thus can effectively regulate the interaction force between the robot and the object while keeping the robot balance. Experimental validation of our proposed approach is successfully conducted on a Unitree A1 robot, allowing it to manipulate an unknown time-varying load up to 7 kg (60% of the robot's weight). Moreover, our framework enables fast adaptation to unknown slopes or different surfaces with different friction coefficients.more » « less
-
Recent studies on quadruped robots have focused on either locomotion or mobile manipulation using a robotic arm. However, legged robots can manipulate large objects using non-prehensile manipulation primitives, such as planar pushing, to drive the object to the desired location. This paper presents a novel hierarchical model predictive control (MPC) for contact optimization of the manipulation task. Using two cascading MPCs, we split the loco-manipulation problem into two parts: the first to optimize both contact force and contact location between the robot and the object, and the second to regulate the desired interaction force through the robot locomotion. Our method is successfully validated in both simulation and hardware experiments. While the baseline locomotion MPC fails to follow the desired trajectory of the object, our proposed approach can effectively control both object's position and orientation with minimal tracking error. This capability also allows us to perform obstacle avoidance for both the robot and the object during the loco-manipulation task.more » « less