skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fluorescent Waveguide Lattices for Enhanced Light Harvesting and Solar Cell Performance
We present the properties and performance of fluorescent waveguide lattices as coatings for solar cells, designed to address the significant mismatch between the solar cell’s spectral response range and the solar spectrum. Using arrays of microscale visible light optical beams transmitted through photoreactive polymer resins comprising acrylate and silicone monomers and fluorescein o,o′-dimethacrylate comonomer, we photopolymerize well-structured films with single and multiple waveguide lattices. The materials exhibited bright green-yellow fluorescence emission through down-conversion of blue-UV excitation and light redirection from the dye emission and waveguide lattice structure. This enables the films to collect a broader spectrum of light, spanning UV–vis–NIR over an exceptionally wide angular range of ±70°. When employed as encapsulant coatings on commercial silicon solar cells, the polymer waveguide lattices exhibited significant enhancements in solar cell current density. Below 400 nm, the primary mode of enhancement is through down-conversion and light redirection from the dye emission and collection by the waveguides. Above 400 nm, the primary modes of enhancement were a combination of down-conversion, wide-angle light collection, and light redirection from the dye emission and collection by the waveguides. Waveguide lattices with higher dye concentrations produced more well-defined structures better suited for current generation in encapsulated solar cells. Under standard AM 1.5 G irradiation, we observed nominal average current density increases of 0.7 and 1.87 mA/cm2 for single waveguide lattices and two intersecting lattices, respectively, across the full ±70° range and reveal optimal dye concentrations and suitable lattice structures for solar cell performance. Our findings demonstrate the significant potential of incorporating down-converting fluorescent dyes in polymer waveguide lattices for improving the current spectral and angular response of solar cell technologies toward increasing clean energy in the energy grid.  more » « less
Award ID(s):
1903592
PAR ID:
10534378
Author(s) / Creator(s):
;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Applied Energy Materials
Volume:
6
Issue:
12
ISSN:
2574-0962
Page Range / eLocation ID:
6646 to 6655
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Here presented are the properties and performance of a new metallo‐dielectric waveguide array structure as the encapsulation material for silicon solar cells. The arrays are produced through light‐induced self‐writing combined with in situ photochemical synthesis of silver nanoparticles. Each waveguide comprises a cylindrical core consisting of a high refractive index polymer and silver nanoparticles homogenously dispersed in its medium, all of which are surrounded by a low refractive index common cladding. The waveguide array‐based films are processed directly over a silicon solar cell. Arrays with systematically varied concentration of AgSbF6 as the salt precursor are explored. The structures are tested for their wide‐angle light capture capabilities, specifically toward enhanced conversion efficiency and current production of encapsulated solar cells. Observed are increases in the external quantum efficiency, especially at wide incident angles up to 70°, and nominal increases in the short circuit current density by 1 mA cm−2 (relative to an array without nanoparticles). Enhanced light collection is explained in terms of the beneficial effect of scattering by the nanoparticles along the waveguide cores. This is a promising approach toward solar cell encapsulants that aid to increase solar cell output over both the course of the day and year. 
    more » « less
  2. Microfiber optic array structures are fabricated and employed as an optical structure overlaying a front-contact silicon solar cell. The arrays are synthesized through light-induced self-writing in a photo-crosslinking acrylate resin, which produces periodically spaced, high-aspect-ratio, and vertically aligned tapered microfibers deposited on a transparent substrate. The structure is then positioned over and sealed onto the solar cell surface. Their fiber optic properties enable collection of non-normal incident light, allowing the structure to mitigate shading loss through the redirection of incident light away from contacts and toward the solar cell. Angle-averaged external quantum efficiency increases nominally by 1.61%, resulting in increases in short-circuit current density up to 1.13 mA/cm2. This work demonstrates a new approach to enhance light collection and conversion using a scalable, straightforward, light-based additive manufacturing process. 
    more » « less
  3. Background: Photoluminescent materials have been used for diverse applications in thefields of science and engineering, such as optical storage, biological labeling, noninvasive imaging,solid-state lasers, light-emitting diodes, theranostics/theragnostics, up-conversion lasers, solar cells,spectrum modifiers, photodynamic therapy remote controllers, optical waveguide amplifiers andtemperature sensors. Nanosized luminescent materials could be ideal candidates in these applications.Objective: This review is to present a brief overview of photoluminescent nanofibers obtainedthrough electrospinning and their emission characteristics.Methods: To prepare bulk-scale nanosized materials efficiently and cost-effectively, electrospinningis a widely used technique. By the electrospinning method, a sufficiently high direct-current voltageis applied to a polymer solution or melt; and at a certain critical point when the electrostatic forceovercomes the surface tension, the droplet is stretched to form nanofibers. Polymer solutions or meltswith a high degree of molecular cohesion due to intermolecular interactions are the feedstock. Subsequentcalcination in air or specific gas may be required to remove the organic elements to obtainthe desired composition.Results: The luminescent nanofibers are classified based on the composition, structure, and synthesismaterial. The photoluminescent emission characteristics of the nanofibers reveal intriguing featuressuch as polarized emission, energy transfer, fluorescent quenching, and sensing. An overview of theprocess, controlling parameters and techniques associated with electrospinning of organic, inorganicand composite nanofibers are discussed in detail. The scope and potential applications of these luminescentfibers also conversed.Conclusion: The electrospinning process is a matured technique to produce nanofibers on a largescale. Organic nanofibers have exhibited superior fluorescent emissions for waveguides, LEDs andlasing devices, and inorganic nanofibers for high-end sensors, scintillators, and catalysts. Multifunctionalitiescan be achieved for photovoltaics, sensing, drug delivery, magnetism, catalysis, andso on. The potential of these nanofibers can be extended but not limited to smart clothing, tissueengineering, energy harvesting, energy storage, communication, safe data storage, etc. and it isanticipated that in the near future, luminescent nanofibers will find many more applications in diversescientific disciplines. 
    more » « less
  4. III–V‐based multijunction solar cells have become the leading power generation technology for space applications due to their high power conversion efficiency and reliable performance in extraterrestrial environments. Thinning down the absorber layers of multijunction solar cells can considerably reduce the production cost and improve their radiation hardness. Recent advances in ultrathin GaAs single‐junction solar cells suggest the development of light‐trapping nanostructures to increase light absorption in optically thin layers within III–V‐based multijunction solar cells. Herein, a novel and highly scalable nanosphere lithography‐assisted chemical etching method to fabricate light‐trapping nanostructures in InGaP/GaAs dual‐junction solar cells is studied. Numerical models show that integrating the nanostructured Al2O3/Ag rear mirror significantly enhances the broadband absorption within the GaAs bottom cell. Results demonstrate that the light‐trapping nanostructures effectively increase the short‐circuit current density in GaAs bottom cells from 14.04 to 15.06 mA cm−2. The simulated nanostructured InGaP/GaAs dual‐junction structure shows improved current matching between the GaAs bottom cell and the InGaP top cell, resulting in 1.12x higher power conversion efficiency. These findings highlight the potential of light‐trapping nanostructures to improve the performance of III‐V‐based multijunction photovoltaic systems, particularly for high‐efficiency applications in space. 
    more » « less
  5. Abstract Polymer nanocomposite coatings of solar photovoltaic cells that absorb solar ultraviolet (UV) radiation and convert it into visible and near-infrared (NIR) light can increase the operational lifetime and the energy efficiency of the cells. We report a polymer nanocomposite spectrum converting layer (SCL) made of colorless polyimide CORIN impregnated with the nanoparticles (NPs) of fluoride NaYF4doped with three-valent ions of Europium at a molar concentration of 60%. The NPs were the nanocrystals (179 ± 35 nm in size) in thermally stable hexagonal beta-phase. The visible-NIR photoluminescence quantum yield of the nano-powder was ∼69%. The SCLs were applied using the open-air multi-beam multi-target pulsed laser deposition method to silicon heterojunction (SHJ), copper-indium-gallium-selenide (CIGS), and inverted metamorphic multijunction (IMM) solar cells. The cells were exposed to UV radiation from a 365 nm light emitting diode. TheI–Vcharacteristics of the cells were measured with a solar simulator using AM0 filter. The proposed SCLs improved the UV stability of all three types of the cells: the power degradation of SHJs and IMMs cells was stopped or slightly reversed and the degradation rate of CIGSs decreased by ∼25%. The proposed SCLs have great commercial potential, especially for applications to space power. 
    more » « less