Abstract Quantum dots encompass a broad spectrum of optical, catalytic, and electrochemical properties bringing in novel applications in catalysis, imaging, displays, and optoelectronics. Herein, the unanticipated broad‐spectrum light absorption and high fluorescence quantum yield in fluorinated boron nitride (FBN) quantum dots are discussed. A heterostructure of FBN quantum dots with a wide‐bandgap semiconductor, titania nanotube arrays, exhibits high photocatalytic activity as evidenced by high external quantum efficiency extending from ultraviolet to green region of the solar spectrum (≈24% at 400 nm). The high activity is confirmed using photoelectrochemical hydrogen evolution experiments. Further, it is demonstrated that high fluorescence quantum yield could be tapped for the detection of glycolytic activity in cancer cells compared to normal cells. This finding could shift the paradigm of molecular detection using quantum dots. The 0D structure and the gap states introduced through fluorination are believed to be responsible for these unprecedented characteristics of boron nitride. 
                        more » 
                        « less   
                    
                            
                            Metasurface-enhanced photochemical activity in visible light absorbing semiconductors
                        
                    
    
            Heterogeneous photocatalysis is an important research problem relevant to a variety of sustainable energy technologies. However, obtaining high photocatalytic efficiency from visible light absorbing semiconductors is challenging due to a combination of weak absorption, transport losses, and low activity. Aspects of this problem have been addressed by multilayer approaches, which provide a general scheme for engineering surface reactivity and stability independent of electronic considerations. However, an analogous broad framework for optimizing light–matter interactions has not yet been demonstrated. Here, we establish a photonic approach using semiconductor metasurfaces that is highly effective in enhancing the photocatalytic activity of GaAs, a high-performance semiconductor with a near-infrared bandgap. Our engineered pillar arrays with heights of ∼150 nm exhibit Mie resonances near 700 nm that result in near-unity absorption and exhibit a field profile that maximizes charge carrier generation near the solid–liquid interface, enabling short transport distances. Our hybrid metasurface photoanodes facilitate oxygen evolution and exhibit enhanced incident photon-to-current efficiencies that are ∼22× larger than a corresponding thin film for resonant excitation and 3× larger for white light illumination. Key to these improvements is the preferential generation of photogenerated carriers near the semiconductor interface that results from the field enhancement profile of magnetic dipolar-type modes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2112550
- PAR ID:
- 10534429
- Publisher / Repository:
- The Journal of Chemical Physics
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 160
- Issue:
- 14
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Typical lead‐based perovskites solar cells show an onset of photogeneration around 800 nm, leaving plenty of spectral loss in the near‐infrared (NIR). Extending light absorption beyond 800 nm into the NIR should increase photocurrent generation and further improve photovoltaic efficiency of perovskite solar cells (PSCs). Here, a simple and facile approach is reported to incorporate a NIR‐chromophore that is also a Lewis‐base into perovskite absorbers to broaden their photoresponse and increase their photovoltaic efficiency. Compared with pristine PSCs without such an organic chromophore, these solar cells generate photocurrent in the NIR beyond the band edge of the perovskite active layer alone. Given the Lewis‐basic nature of the organic semiconductor, its addition to the photoactive layer also effectively passivates perovskite defects. These films thus exhibit significantly reduced trap densities, enhanced hole and electron mobilities, and suppressed illumination‐induced ion migration. As a consequence, perovskite solar cells with organic chromophore exhibit an enhanced efficiency of 21.6%, and substantively improved operational stability under continuous one‐sun illumination. The results demonstrate the potential generalizability of directly incorporating a multifunctional organic semiconductor that both extends light absorption and passivates surface traps in perovskite active layers to yield highly efficient and stable NIR‐harvesting PSCs.more » « less
- 
            Chemical modification of semiconductor surfaces with molecular electrocatalysts provides a strategy for developing integrated homogeneous-heterogeneous materials capable of converting sunlight to fuels and other value-added products, but their development is hampered by an incomplete understanding of the factors limiting their performance. Although kinetic models have been separately developed to describe photoelectrochemical or homogeneous electrocatalytic reactions, related modeling for molecular-modified hybrid photoelectrodes has not been as extensively elaborated. This presentation addresses the interplay between light absorption, charge transfer, and catalytic activity during photoelectrosynthetic transformations at a molecular-modified semiconductor surface. The analysis provides opportunities to better understand the principles governing these hierarchal constructs and develop improved photocatalytic assemblies.more » « less
- 
            Abstract. Light transmission into bare glacial ice affects surfaceenergy balance, biophotochemistry, and light detection and ranging (lidar)laser elevation measurements but has not previously been reported for theGreenland Ice Sheet. We present measurements of spectral transmittance at350–900 nm in bare glacial ice collected at a field site in the westernGreenland ablation zone (67.15∘ N, 50.02∘ W). Empirical irradianceattenuation coefficients at 350–750 nm are ∼ 0.9–8.0 m−1 for ice at 12–124 cm depth. The absorption minimum is at∼ 390–397 nm, in agreement with snow transmissionmeasurements in Antarctica and optical mapping of deep ice at the SouthPole. From 350–530 nm, our empirical attenuation coefficients are nearly1 order of magnitude larger than theoretical values for optically pureice. The estimated absorption coefficient at 400 nm suggests the ice volumecontained a light-absorbing particle concentration equivalent to∼ 1–2 parts per billion (ppb) of black carbon, which is similar topre-industrial values found in remote polar snow. The equivalent mineraldust concentration is ∼ 300–600 ppb, which is similar to values forNorthern Hemisphere warm periods with low aeolian activity inferred from icecores. For a layer of quasi-granular white ice (weathering crust)extending from the surface to ∼ 10 cm depth, attenuationcoefficients are 1.5 to 4 times larger than for deeper bubbly ice. Owing tohigher attenuation in this layer of near-surface granular ice, opticalpenetration depth at 532 nm is 14 cm (20 %) lower than asymptoticattenuation lengths for optically pure bubbly ice. In addition to thetraditional concept of light scattering on air bubbles, our results implythat the granular near-surface ice microstructure of weathering crust isan important control on radiative transfer in bare ice on the Greenland IceSheet ablation zone, and we provide new values of flux attenuation,absorption, and scattering coefficients to support model development andvalidation.more » « less
- 
            Solar-driven hydrogen generation is one of the promising technologies developed to address the world’s growing energy demand in an sustainable way. While, for hydrogen generation (otherwise water splitting), photocatalytic, photoelectrochemical, and PV-integrated water splitting systems employing conventional semiconductor oxides materials and their electrodes have been under investigation for over a decade, lead (Pb)- halide perovskites (HPs) made their debut in 2016. Since then, the exceptional characteristics of these materials, such as their tunable optoelectronic properties, ease of processing, high absorption coefficients, and long diffusion lengths, have positioned them as a highly promising material for solar-driven water splitting. Like in solar photovoltaics, a solar-driven water splitting field is also dominated by Pb-HPs with ongoing efforts to improve material stability and hydrogen evolution/generation rate (HER). Despite this, with the unveiling potential of various Pb-free HP compositions in photovoltaics and optoelectronics researchers were inspired to explore the potential of these materials in water splitting. In this current review, we outlined the fundamentals of water splitting, provided a summary of Pb HPs in this field, and the associated issues are presented. Subsequently, Pb-free HP compositions and strategies employed for improving the photocatalytic and/or electrochemical activity of the material are discussed in detail. Finally, this review presents existing issues and the future potential of lead-free HPs, which show potential for enhancing productivity of solar-to-hydrogen conversion technologies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    