Smart glasses have become more prevalent as they provide an increasing number of applications for users. They store various types of private information or can access it via connections established with other devices. Therefore, there is a growing need for user identification on smart glasses. In this paper, we introduce a low-power and minimally-obtrusive system called SonicID, designed to authenticate users on glasses. SonicID extracts unique biometric information from users by scanning their faces with ultrasonic waves and utilizes this information to distinguish between different users, powered by a customized binary classifier with the ResNet-18 architecture. SonicID can authenticate users by scanning their face for 0.06 seconds. A user study involving 40 participants confirms that SonicID achieves a true positive rate of 97.4%, a false positive rate of 4.3%, and a balanced accuracy of 96.6% using just 1 minute of training data collected for each new user. This performance is relatively consistent across different remounting sessions and days. Given this promising performance, we further discuss the potential applications of SonicID and methods to improve its performance in the future.
more »
« less
Station: Gesture-Based Authentication for Voice Interfaces
The popularity of smart home devices has led to an increase in security incidents happening in smart homes. A key measure to avoid such incidents is to authenticate users before they can interact with smart devices. However, current methods often require additional hardware. This article proposes STATION, a gesture-based authentication system, an effective gesture-based authentication method built on top of the voice interfaces already available in these smart home devices, without adding new hardware. STATION uses a gesture processing pipeline that identifies Doppler-existing frames and detects the direction of arrival of Reflection to authenticate users in low SNR environments and at longer distances. Furthermore, regarding the nature of gesture-based authentication, this system also supports detecting user liveness, preventing replay and synthesis attacks from remote attackers. The evaluation of STATION shows high accuracy with a false acceptance rate (FAR) of 0.08% and false rejection rate (FRR) of 3.10% for users within 1.5 m of the device.
more »
« less
- Award ID(s):
- 2320974
- PAR ID:
- 10534735
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Internet of Things Journal
- Volume:
- 11
- Issue:
- 12
- ISSN:
- 2372-2541
- Page Range / eLocation ID:
- 22668 to 22683
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Despite rapid advancements in authentication technologies, little user testing has been conducted on the various authentication methods proposed for smart homes. Users’ preferences about authentication methods may be affected by their beliefs in the reliability of the method, the type and location of devices for which they must authenticate, the effort required for successful authentication, and more. In this paper, we provide insight into users’ concerns with these methods through a 46-participant user study. In particular, we seek to understand users’ preferences towards different authentication methods in terms of the perceived security and usability implications of each method.more » « less
-
User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This paper supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV and thermostat, etc. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep learning based user authentication scheme to accurately identify each individual user. Extensive experiments in two typical indoor environments, a university office and an apartment, are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% and 91% authentication accuracy with 11 subjects through walking and stationary activities, respectively.more » « less
-
null (Ed.)User authentication is a critical process in both corporate and home environments due to the ever-growing security and privacy concerns. With the advancement of smart cities and home environments, the concept of user authentication is evolved with a broader implication by not only preventing unauthorized users from accessing confidential information but also providing the opportunities for customized services corresponding to a specific user. Traditional approaches of user authentication either require specialized device installation or inconvenient wearable sensor attachment. This article supports the extended concept of user authentication with a device-free approach by leveraging the prevalent WiFi signals made available by IoT devices, such as smart refrigerator, smart TV, and smart thermostat, and so on. The proposed system utilizes the WiFi signals to capture unique human physiological and behavioral characteristics inherited from their daily activities, including both walking and stationary ones. Particularly, we extract representative features from channel state information (CSI) measurements of WiFi signals, and develop a deep-learning-based user authentication scheme to accurately identify each individual user. To mitigate the signal distortion caused by surrounding people’s movements, our deep learning model exploits a CNN-based architecture that constructively combines features from multiple receiving antennas and derives more reliable feature abstractions. Furthermore, a transfer-learning-based mechanism is developed to reduce the training cost for new users and environments. Extensive experiments in various indoor environments are conducted to demonstrate the effectiveness of the proposed authentication system. In particular, our system can achieve over 94% authentication accuracy with 11 subjects through different activities.more » « less
-
Commodity ultra-high-frequency (UHF) RFID authentication systems only provide weak user authentication, as RFID tags can be easily stolen, lost, or cloned by attackers. This paper presents the design and evaluation of SmartRFID, a novel UHF RFID authentication system to promote commodity crypto-less UHF RFID tags for security-sensitive applications. SmartRFID explores extremely popular smart devices and requires a legitimate user to enroll his smart device along with his RFID tag. Besides authenticating the RFID tag as usual, SmartRFID verifies whether the user simultaneously possesses the associated smart device with both feature-based machine learning and deep learning techniques. The user is considered authentic if and only if passing the dual verifications. Comprehensive user experiments on commodity smartwatches and RFID devices confirmed the high security and usability of SmartRFID. In particular, SmartRFID achieves a true acceptance rate of above 97.5% and a false acceptance rate of less than 0.7% based on deep learning. In addition, SmartRFID can achieve an average authentication latency of less than 2.21s, which is comparable to inputting a PIN on a door keypad or smartphone.more » « less
An official website of the United States government

