Abstract Current clustering analysis of spatial transcriptomics data primarily relies on molecular information and fails to fully exploit the morphological features present in histology images, leading to compromised accuracy and interpretability. To overcome these limitations, we have developed a multi-stage statistical method called iIMPACT. It identifies and defines histology-based spatial domains based on AI-reconstructed histology images and spatial context of gene expression measurements, and detects domain-specific differentially expressed genes. Through multiple case studies, we demonstrate iIMPACT outperforms existing methods in accuracy and interpretability and provides insights into the cellular spatial organization and landscape of functional genes within spatial transcriptomics data.
more »
« less
This content will become publicly available on December 1, 2025
spVC for the detection and interpretation of spatial gene expression variation
Abstract Spatially resolved transcriptomics technologies have opened new avenues for understanding gene expression heterogeneity in spatial contexts. However, existing methods for identifying spatially variable genes often focus solely on statistical significance, limiting their ability to capture continuous expression patterns and integrate spot-level covariates. To address these challenges, we introduce spVC, a statistical method based on a generalized Poisson model. spVC seamlessly integrates constant and spatially varying effects of covariates, facilitating comprehensive exploration of gene expression variability and enhancing interpretability. Simulation and real data applications confirm spVC’s accuracy in these tasks, highlighting its versatility in spatial transcriptomics analysis.
more »
« less
- Award ID(s):
- 2215705
- PAR ID:
- 10534764
- Publisher / Repository:
- BioMed Central
- Date Published:
- Journal Name:
- Genome Biology
- Volume:
- 25
- Issue:
- 1
- ISSN:
- 1474-760X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundSingle-cell RNA-sequencing (scRNA-seq) technologies allow for the study of gene expression in individual cells. Often, it is of interest to understand how transcriptional activity is associated with cell-specific covariates, such as cell type, genotype, or measures of cell health. Traditional approaches for this type of association mapping assume independence between the outcome variables (or genes), and perform a separate regression for each. However, these methods are computationally costly and ignore the substantial correlation structure of gene expression. Furthermore, count-based scRNA-seq data pose challenges for traditional models based on Gaussian assumptions. ResultsWe aim to resolve these issues by developing a reduced-rank regression model that identifies low-dimensional linear associations between a large number of cell-specific covariates and high-dimensional gene expression readouts. Our probabilistic model uses a Poisson likelihood in order to account for the unique structure of scRNA-seq counts. We demonstrate the performance of our model using simulations, and we apply our model to a scRNA-seq dataset, a spatial gene expression dataset, and a bulk RNA-seq dataset to show its behavior in three distinct analyses. ConclusionWe show that our statistical modeling approach, which is based on reduced-rank regression, captures associations between gene expression and cell- and sample-specific covariates by leveraging low-dimensional representations of transcriptional states.more » « less
-
Abstract Spatial transcriptomics data play a crucial role in cancer research, providing a nuanced understanding of the spatial organization of gene expression within tumor tissues. Unraveling the spatial dynamics of gene expression can unveil key insights into tumor heterogeneity and aid in identifying potential therapeutic targets. However, in many large-scale cancer studies, spatial transcriptomics data are limited, with bulk RNA-seq and corresponding Whole Slide Image (WSI) data being more common (e.g. TCGA project). To address this gap, there is a critical need to develop methodologies that can estimate gene expression at near-cell (spot) level resolution from existing WSI and bulk RNA-seq data. This approach is essential for reanalyzing expansive cohort studies and uncovering novel biomarkers that have been overlooked in the initial assessments. In this study, we present STGAT (Spatial Transcriptomics Graph Attention Network), a novel approach leveraging Graph Attention Networks (GAT) to discern spatial dependencies among spots. Trained on spatial transcriptomics data, STGAT is designed to estimate gene expression profiles at spot-level resolution and predict whether each spot represents tumor or non-tumor tissue, especially in patient samples where only WSI and bulk RNA-seq data are available. Comprehensive tests on two breast cancer spatial transcriptomics datasets demonstrated that STGAT outperformed existing methods in accurately predicting gene expression. Further analyses using the TCGA breast cancer dataset revealed that gene expression estimated from tumor-only spots (predicted by STGAT) provides more accurate molecular signatures for breast cancer sub-type and tumor stage prediction, and also leading to improved patient survival and disease-free analysis. Availability: Code is available at https://github.com/compbiolabucf/STGAT.more » « less
-
Spatial transcriptomics (ST) technologies are rapidly becoming the extension of single-cell RNA sequencing (scRNAseq), holding the potential of profiling gene expression at a single-cell resolution while maintaining cellular compositions within a tissue. Having both expression profiles and tissue organization enables researchers to better understand cellular interactions and heterogeneity, providing insight into complex biological processes that would not be possible with traditional sequencing technologies. Data generated by ST technologies are inherently noisy, high-dimensional, sparse, and multi-modal (including histological images, count matrices, etc.), thus requiring specialized computational tools for accurate and robust analysis. However, many ST studies currently utilize traditional scRNAseq tools, which are inadequate for analyzing complex ST datasets. On the other hand, many of the existing ST-specific methods are built upon traditional statistical or machine learning frameworks, which have shown to be sub-optimal in many applications due to the scale, multi-modality, and limitations of spatially resolved data (such as spatial resolution, sensitivity, and gene coverage). Given these intricacies, researchers have developed deep learning (DL)-based models to alleviate ST-specific challenges. These methods include new state-of-the-art models in alignment, spatial reconstruction, and spatial clustering, among others. However, DL models for ST analysis are nascent and remain largely underexplored. In this review, we provide an overview of existing state-of-the-art tools for analyzing spatially resolved transcriptomics while delving deeper into the DL-based approaches. We discuss the new frontiers and the open questions in this field and highlight domains in which we anticipate transformational DL applications.more » « less
-
Abstract Recent technologies such asspatial transcriptomics, enable the measurement of gene expressions at the single-cell level along with the spatial locations of these cells in the tissue. Spatial clustering of the cells provides valuable insights into the understanding of the functional organization of the tissue. However, most such clustering methods involve some dimension reduction that leads to a loss of the inherent dependency structure among genes at any spatial location in the tissue. This destroys valuable insights of gene co-expression patterns apart from possibly impacting spatial clustering performance. In spatial transcriptomics, the matrix-variate gene expression data, along with spatial coordinates of the single cells, provides information on both gene expression dependencies and cell spatial dependencies through its row and column covariances. In this work, we propose a joint Bayesian approach to simultaneously estimate these gene and spatial cell correlations. These estimates provide data summaries for downstream analyses. We illustrate our method with simulations and analysis of several real spatial transcriptomic datasets. Our work elucidates gene co-expression networks as well as clear spatial clustering patterns of the cells. Furthermore, our analysis reveals that downstream spatial-differential analysis may aid in the discovery of unknown cell types from known marker genes.more » « less
An official website of the United States government
