skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Dynamically tuning and reconfiguring microwave bandpass filters using optical control of switching elements
Abstract We report a novel approach for dynamically tuning and reconfiguring microwave bandpass filters (BPFs) based on optically controlled switching elements using photoconductivity modulation in semiconductors. For a prototype demonstration, a BPF circuit featuring a second‐order design using two closely coupled split‐ring resonators embedded with multiple silicon chips (as switching elements) was designed, fabricated, and characterized. The silicon chips were optically linked to fiber‐coupled laser diodes (808 nm light) for switching/modulation, enabling dynamic tuning and reconfiguring of the BPF without any complex biasing circuits. By turning on and off the two laser diodes simultaneously, the BPF response can be dynamically reconfigured between bandpass and broadband suppression. Moreover, the attenuation level of the passband can be continuously adjusted (from 0.7 to 22 dB at the center frequency of 3.03 GHz) by varying the light intensity from 0 to 40 W/cm2. The tuning/reconfiguring 3‐dB bandwidth is estimated to be ~200 kHz. In addition, the potential and limitations of the proposed approach using photoconductivity modulation are discussed. With the strong tuning/reconfiguring capability demonstrated and the great potential for high‐frequency operation, this approach holds promise for the development of more advanced tunable filters and other adaptive circuits for next‐generation sensing, imaging, and communication systems.  more » « less
Award ID(s):
2223949
PAR ID:
10534885
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Microwave and Optical Technology Letters
Volume:
66
Issue:
2
ISSN:
0895-2477
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Two architectures of fully-planar differential-mode dual-band bandpass filters (DB-BPFs) with enlarged common-mode-suppression bandwidth are reported. The first one, which aims at designs with broadly-separated wide passbands, exploits the loading of extra lines in its balanced symmetry plane. Thus, multiple common-mode transmission zeros (TZs) are created to make wider the DB-BPF common-mode-rejection range. The second one can be used for realizations with closely-spaced passbands and employs a properly-balanced quasi-bandpass-type DB-BPF topology. In this case, the common-mode-mitigation bandwidth broadening is performed by adequately selecting the type of implementation for the short-circuit terminations of its resonating lines- i.e., virtual or physical short circuits in the differential-mode operation-. For experimental-validation purposes, two microstrip DB-BPF prototypes are manufactured and tested. 
    more » « less
  2. Abstract We present a metal–semiconductor (M–S) based electro-optic modulator designed for functional plasmonic circuits, utilizing the active control of surface plasmon polaritons (SPPs) at M–S junction interfaces. Through self-consistent multiphysics simulations, including electromagnetic, thermal, and current–voltage (IV) characteristics, we estimate bias- and doping concentration-dependent SPP modulation and switching times. This study focuses on germanium-based Schottky contacts and can be extended to other semiconducting materials. We performed parametric analysis using the developed thermo-electro-optic model to identify device parameters and dimensions for enhanced optical confinement and faster operation. The studied device exhibits signal modulation exceeding −28 dB, responsivity greater than −1800 dB V−1, and switching rates of 8 GHz, suggesting potential data rates above 16 Gbit s−1. Additionally, frequency response analysis using the numerical model confirms the device’s electrical tunability and predicts a 3 dB bandwidth of up to 4 GHz. These findings highlight the significant potential of Schottky junctions as active components in the development of plasmonic-based integrated circuits. 
    more » « less
  3. A coupling-matrix approach for the theoretical design of a type of input-reflectionless RF/microwave bandpass filters (BPFs) and bandstop filters (BSFs) is presented. They are based on diplexer architectures with arbitrary-order bandpass and bandstop filtering channels that feature complementary transfer functions. The transmission behavior of these reflectionless filters is defined by the channel that is not loaded at its output, whereas the input-signal energy that is not transmitted by this branch is completely dissipated by the loading resistor of the other channel. Analytical formulas for the coupling coefficients for the first-to-fourth-order filter designs are provided and validated through several synthesis examples. This theoretical design methodology, along with an optimization step, is also exploited to design input-quasi-reflectionless quasielliptic- type BPFs with a transmission-zero-(TZ)-generation cell in their bandpass filtering channel. In addition, the application of the proposed input-reflectionless BPF and BSF networks to input-quasi-reflectionless multiplexer design is approached. It is shown that a single resistively terminated multi-band BSF branch can absorb the input-signal energy not transmitted by the multiplexer channels in their common stopband regions to achieve quasi-reflectionless characteristics at its input. Moreover, experimental microstrip prototypes consisting of 2-GHz third-order BPF and BSF circuits, a 2-GHz sharp-rejection thirdorder BPF with two close-to-passband TZs, and a second-order diplexer device with channels centered at 1.75 and 2.1 GHz are developed and measured. 
    more » « less
  4. We present a photoinduced reconfigurable metasurface to enable high spatial resolution terahertz (THz) wave modulation. Conventional photoinduced THz wave modulation uses optically induced conductive patterns on a semiconductor substrate to create programmable passive THz devices. The technique, albeit versatile and straightforward, suffers from limited performance resulting from the severe lateral diffusion of the photogenerated carriers that undermines the spatial resolution and conductivity contrast of the photoinduced conductive patterns. The proposed metasurface overcomes the limitation using a metal-jointed silicon mesa array with subwavelength-scaled dimensions on an insulator substrate. The structure physically restrains the lateral diffusion of the photogenerated carriers while ensuring the electrical conductivity between the silicon mesas , which is essential for THz wave modulation. The metasurface creates high-definition photoconductive patterns with dimensions smaller than the diffusion length of photogenerated carriers. The metasurface provides a modulation depth of −20 to −10 dB for the THz waves between 0.2 to 1.2 THz and supports a THz bandpass filter with a tunable central frequency. The new, to the best of our knowledge, design concept will benefit the implementation of reconfigurable THz devices. 
    more » « less
  5. A class of out-of-phase 3-dB bandpass-filtering couplers with input-reflectionless capabilities is presented. To obtain the bandpass-filter (BPF) functionality, identical BPF sections are respectively co-integrated in the coupler signal paths from the input to the direct and coupled ports. Furthermore, a resistivelyterminated bandstop-filter (BSF) section with complementary transfer function with regard to the one of the BPF section is loaded at the coupler input access. In this manner, the RF inputsignal energy that is not transmitted to the direct and coupled terminals is dissipated by the loading resistor of the BSF section. Hence, the input-reflectionless behavior is realized. Optimizationbased first-to-third-order design examples are shown. Moreover, for practical-validation purposes of this RF tri-functional device, a 2-GHz second-order microstrip prototype is built and tested. 
    more » « less