HCI research has explored AI as a design material, suggesting that designers can envision AI’s design opportunities to improve UX. Recent research claimed that enterprise applications offer an opportunity for AI innovation at the user experience level. We conducted design workshops to explore the practices of experienced designers who work on cross-functional AI teams in the enterprise. We discussed how designers successfully work with and struggle with AI. Our findings revealed that designers can innovate at the system and service levels. We also discovered that making a case for an AI feature’s return on investment is a barrier for designers when they propose AI concepts and ideas. Our discussions produced novel insights on designers’ role on AI teams, and the boundary objects they used for collaborating with data scientists. We discuss the implications of these findings as opportunities for future research aiming to empower designers in working with data and AI. 
                        more » 
                        « less   
                    
                            
                            Sketching AI Concepts with Capabilities and Examples: AI Innovation in the Intensive Care Unit
                        
                    
    
            Advances in artificial intelligence (AI) have enabled unprecedented capabilities, yet innovation teams struggle when envisioning AI concepts. Data science teams think of innovations users do not want, while domain experts think of innovations that cannot be built. A lack of effective ideation seems to be a breakdown point. How might multidisciplinary teams identify buildable and desirable use cases? This paper presents a first hand account of ideating AI concepts to improve critical care medicine. As a team of data scientists, clinicians, and HCI researchers, we conducted a series of design workshops to explore more effective approaches to AI concept ideation and problem formulation. We detail our process, the challenges we encountered, and practices and artifacts that proved effective. We discuss the research implications for improved collaboration and stakeholder engagement, and discuss the role HCI might play in reducing the high failure rate experienced in AI innovation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2007501
- PAR ID:
- 10534929
- Editor(s):
- Mueller, Florian Floyd; Kyburz, Penny; Williamson, Julie R; Sas, Corina; Wilson, Max L; Dugas, Phoebe Toups; Shklovski, Irina
- Publisher / Repository:
- ACM
- Date Published:
- Edition / Version:
- 1
- ISBN:
- 9798400703300
- Page Range / eLocation ID:
- 1-18
- Subject(s) / Keyword(s):
- Brainstorming, ideation, human-centered AI, healthcare
- Format(s):
- Medium: X Size: 10.8MB Other: pdf
- Size(s):
- 10.8MB
- Location:
- Honolulu HI USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Advances in artificial intelligence have enabled unprecedented technical capabilities, yet making these advances useful in the real world remains challenging. We engaged in a Research through Design process to improve the ideation of AI products and services. We developed a design resource capturing AI capabilities based on 40 AI features commonly used across various domains. To probe its usefulness, we created a set of slides illustrating AI capabilities and asked designers to ideate AI-enabled user experiences. We also incorporated capabilities into our own design process to brainstorm concepts with domain experts and data scientists. Our research revealed that designers should focus on innovations where moderate AI performance creates value. We reflect on our process and discuss research implications for creating and assessing resources to systematically explore AI’s problem-solution space.more » « less
- 
            Reddy, S.; Winter, J.S.; Padmanabhan, S. (Ed.)AI applications are poised to transform health care, revolutionizing benefits for individuals, communities, and health-care systems. As the articles in this special issue aptly illustrate, AI innovations in healthcare are maturing from early success in medical imaging and robotic process automation, promising a broad range of new applications. This is evidenced by the rapid deployment of AI to address critical challenges related to the COVID-19 pandemic, including disease diagnosis and monitoring, drug discovery, and vaccine development. At the heart of these innovations is the health data required for deep learning applications. Rapid accumulation of data, along with improved data quality, data sharing, and standardization, enable development of deep learning algorithms in many healthcare applications. One of the great challenges for healthcare AI is effective governance of these data—ensuring thoughtful aggregation and appropriate access to fuel innovation and improve patient outcomes and healthcare system efficiency while protecting the privacy and security of data subjects. Yet the literature on data governance has rarely looked beyond important pragmatic issues related to privacy and security. Less consideration has been given to unexpected or undesirable outcomes of healthcare in AI, such as clinician deskilling, algorithmic bias, the “regulatory vacuum”, and lack of public engagement. Amidst growing calls for ethical governance of algorithms, Reddy et al. developed a governance model for AI in healthcare delivery, focusing on principles of fairness, accountability, and transparency (FAT), and trustworthiness, and calling for wider discussion. Winter and Davidson emphasize the need to identify underlying values of healthcare data and use, noting the many competing interests and goals for use of health data—such as healthcare system efficiency and reform, patient and community health, intellectual property development, and monetization. Beyond the important considerations of privacy and security, governance must consider who will benefit from healthcare AI, and who will not. Whose values drive health AI innovation and use? How can we ensure that innovations are not limited to the wealthiest individuals or nations? As large technology companies begin to partner with health care systems, and as personally generated health data (PGHD) (e.g., fitness trackers, continuous glucose monitors, health information searches on the Internet) proliferate, who has oversight of these complex technical systems, which are essentially a black box? To tackle these complex and important issues, it is important to acknowledge that we have entered a new technical, organizational, and policy environment due to linked data, big data analytics, and AI. Data governance is no longer the responsibility of a single organization. Rather, multiple networked entities play a role and responsibilities may be blurred. This also raises many concerns related to data localization and jurisdiction—who is responsible for data governance? In this emerging environment, data may no longer be effectively governed through traditional policy models or instruments.more » « less
- 
            The aggregation of individual personality tests to predict team performance is widely accepted in management theory but has significant limitations: the isolated nature of individual personality surveys fails to capture much of the team dynamics that drive real-world team performance. Artificial Swarm Intelligence (ASI), a technology that enables networked teams to think together in real-time and answer questions as a unified system, promises a solution to these limitations by enabling teams to take personality tests together, whereby the team uses ASI to converge upon answers that best represent the group’s disposition. In the present study, the group personality of 94 small teams was assessed by having teams take a standard Big Five Inventory (BFI) test both as individuals, and as a real-time system enabled by an ASI technology known as Swarm AI. The predictive accuracy of each personality assessment method was assessed by correlating the BFI personality traits to a range of real-world performance metrics. The results showed that assessments of personality generated using Swarm AI were far more predictive of team performance than the traditional survey-based method, showing a significant improvement in correlation with at least 25% of performance metrics, and in no case showing a significant decrease in predictive performance. This suggests that Swarm AI technology may be used as a highly effective team personality assessment tool that more accurately predicts future team performance than traditional survey approaches.more » « less
- 
            Artificial intelligence (AI) provides versatile capabilities in applications such as image classification and voice recognition that are most useful in edge or mobile computing settings. Shrinking these sophisticated algorithms into small form factors with minimal computing resources and power budgets requires innovation at several layers of abstraction: software, algorithmic, architectural, circuit, and device-level innovations. However, improvements to system efficiency may impact robustness and vice-versa. Therefore, a co-design framework is often necessary to customize a system for its given application. A system that prioritizes efficiency might use circuit-level innovations that introduce process variations or signal noise into the system, which may use software-level redundancy in order to compensate. In this tutorial, we will first examine various methods of improving efficiency and robustness in edge AI and their tradeoffs at each level of abstraction.Then, we will outline co-design techniques for designing efficient and robust edge AI systems, using federated learning as a specific example to illustrate the effectiveness of co-design.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    