skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Classification of $\mathbb{Z}/2\mathbb{Z}$-quadratic unitary fusion categories (with an appendix by Ryan Johnson, Siu-Hung Ng, David Penneys, Jolie Roat, Matthew Titsworth, and Henry Tucker)
A unitary fusion category is called $$\mathbb{Z}/2\mathbb{Z}$$-quadratic if it has a $$\mathbb{Z}/2\mathbb{Z}$$ group of invertible objects and one other orbit of simple objects under the action of this group. We give a complete classification of $$\mathbb{Z}/2\mathbb{Z}$$-quadratic unitary fusion categories. The main tools for this classification are skein theory, a generalization of Ostrik's results on formal codegrees to analyze the induction of the group elements to the center, and a computation similar to Larson's rank-finiteness bound for $$\mathbb{Z}/3\mathbb{Z}$$-near group pseudounitary fusion categories. This last computation is contained in an appendix coauthored with attendees from the 2014 AMS MRC on Mathematics of Quantum Phases of Matter and Quantum Information.  more » « less
Award ID(s):
2245935
PAR ID:
10534935
Author(s) / Creator(s):
; ;
Publisher / Repository:
European Mathematical Society
Date Published:
Journal Name:
Quantum Topology
ISSN:
1663-487X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper is the first of a pair that aims to classify a large number of the type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . In this work we classify the braided auto-equivalences of the categories of local modules for all known type I I quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . We find that the symmetries are all non-exceptional except for four cases (up to level-rank duality). These exceptional cases are the orbifolds C ( s l 2 , 16 ) Rep ⁡ ( Z 2 ) 0 \mathcal {C}(\mathfrak {sl}_{2}, 16)^0_{\operatorname {Rep}(\mathbb {Z}_{2})} , C ( s l 3 , 9 ) Rep ⁡ ( Z 3 ) 0 \mathcal {C}(\mathfrak {sl}_{3}, 9)^0_{\operatorname {Rep}(\mathbb {Z}_{3})} , C ( s l 4 , 8 ) Rep ⁡ ( Z 4 ) 0 \mathcal {C}(\mathfrak {sl}_{4}, 8)^0_{\operatorname {Rep}(\mathbb {Z}_{4})} , and C ( s l 5 , 5 ) Rep ⁡ ( Z 5 ) 0 \mathcal {C}(\mathfrak {sl}_{5}, 5)^0_{\operatorname {Rep}(\mathbb {Z}_{5})} . We develop several technical tools in this work. We give a skein theoretic description of the orbifold quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . Our methods here are general, and the techniques developed will generalise to give skein theory for any orbifold of a braided tensor category. We also give a formulation of orthogonal level-rank duality in the type D D - D D case, which is used to construct one of the exceptionals. We uncover an unexpected connection between quadratic categories and exceptional braided auto-equivalences of the orbifolds. We use this connection to construct two of the four exceptionals. In the sequel to this paper we will use the classified braided auto-equivalences to construct the corresponding type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . This will essentially finish the type I I II classification for s l n \mathfrak {sl}_n modulo type I I classification. When paired with Gannon’s type I I classification for r ≤ 6 r\leq 6 , our results will complete the type I I II classification for these same ranks. This paper includes an appendix by Terry Gannon, which provides useful results on the dimensions of objects in the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . 
    more » « less
  2. null (Ed.)
    We prove a rank-finiteness conjecture for modular categories: up to equivalence, there are only finitely many modular categories of any fixed rank. Our technical advance is a generalization of the Cauchy theorem in group theory to the context of spherical fusion categories. For a modular category C \mathcal {C} with N = ord ( T ) N= \textrm {ord}(T) , the order of the modular T T -matrix, the Cauchy theorem says that the set of primes dividing the global quantum dimension D 2 D^2 in the Dedekind domain Z [ e 2 π i N ] \mathbb {Z}[e^{\frac {2\pi i}{N}}] is identical to that of N N . 
    more » « less
  3. For a net of C*-algebras on a discrete metric space, we introduce a bimodule version of the DHR tensor category and show that it is an invariant of quasi-local algebras under isomorphisms with bounded spread. For abstract spin systems on a latticeL\subseteq \mathbb{R}^{n}satisfying a weak version of Haag duality, we construct a braiding on these categories. Applying the general theory to quasi-local algebrasAof operators on a lattice invariant under a (categorical) symmetry, we obtain a homomorphism from the group of symmetric QCA to\mathbf{Aut}_{\mathrm{br}}(\mathbf{DHR}(A)), containing symmetric finite-depth circuits in the kernel. For a spin chain with fusion categorical symmetry\mathcal{D}, we show that the DHR category of the quasi-local algebra of symmetric operators is equivalent to the Drinfeld center\mathcal{Z}(\mathcal{D}). We use this to show that, for the double spin-flip action\mathbb{Z}/2\mathbb{Z}\times \mathbb{Z}/2\mathbb{Z}\curvearrowright \mathbb{C}^{2}\otimes \mathbb{C}^{2}, the group of symmetric QCA modulo symmetric finite-depth circuits in 1D contains a copy ofS_{3}; hence, it is non-abelian, in contrast to the case with no symmetry. 
    more » « less
  4. null (Ed.)
    We introduce a computationally tractable way to describe the $$\mathbb Z$$-homotopy fixed points of a $$C_{n}$$-spectrum $$E$$, producing a genuine $$C_{n}$$ spectrum $$E^{hn\mathbb Z}$$ whose fixed and homotopy fixed points agree and are the $$\mathbb Z$$-homotopy fixed points of $$E$$. These form the bottom piece of a contravariant functor from the divisor poset of $$n$$ to genuine $$C_{n}$$-spectra, and when $$E$$ is an $$N_{\infty}$$-ring spectrum, this functor lifts to a functor of $$N_{\infty}$$-ring spectra. For spectra like the Real Johnson--Wilson theories or the norms of Real bordism, the slice spectral sequence provides a way to easily compute the $RO(G)$-graded homotopy groups of the spectrum $$E^{hn\mathbb Z}$$, giving the homotopy groups of the $$\mathbb Z$$-homotopy fixed points. For the more general spectra in the contravariant functor, the slice spectral sequences interpolate between the one for the norm of Real bordism and the especially simple $$\mathbb Z$$-homotopy fixed point case, giving us a family of new tools to simplify slice computations. 
    more » « less
  5. null (Ed.)
    Strong interactions between electrons occupying bands of opposite (orlike) topological quantum numbers (Chern =\pm1 = ± 1 ),and with flat dispersion, are studied by using lowest Landau level (LLL)wavefunctions. More precisely, we determine the ground states for twoscenarios at half-filling: (i) LLL’s with opposite sign of magneticfield, and therefore opposite Chern number; and (ii) LLL’s with the samemagnetic field. In the first scenario – which we argue to be a toy modelinspired by the chirally symmetric continuum model for twisted bilayergraphene – the opposite Chern LLL’s are Kramer pairs, and thus thereexists time-reversal symmetry ( \mathbb{Z}_2 ℤ 2 ).Turning on repulsive interactions drives the system to spontaneouslybreak time-reversal symmetry – a quantum anomalous Hall state describedby one particle per LLL orbital, either all positive Chern |{++\cdots+}\rangle | + + ⋯ + ⟩ or all negative |{--\cdots-}\rangle | − − ⋯ − ⟩ .If instead, interactions are taken between electrons of like-Chernnumber, the ground state is an SU(2) S U ( 2 ) ferromagnet, with total spin pointing along an arbitrary direction, aswith the \nu=1 ν = 1 spin- \frac{1}{2} 1 2 quantum Hall ferromagnet. The ground states and some of theirexcitations for both of these scenarios are argued analytically, andfurther complimented by density matrix renormalization group (DMRG) andexact diagonalization. 
    more » « less