Summary A sequentially adaptive Bayesian design is presented for a clinical trial of cord-blood-derived natural killer cells to treat severe haematologic malignancies. Given six prognostic subgroups defined by disease type and severity, the goal is to optimize cell dose in each subgroup. The trial has five co-primary outcomes: the times to severe toxicity, cytokine release syndrome, disease progression or response and death. The design assumes a multivariate Weibull regression model, with marginals depending on dose, subgroup and patient frailties that induce association between the event times. Utilities of all possible combinations of the non-fatal outcomes over the first 100 days following cell infusion are elicited, with posterior mean utility used as a criterion to optimize the dose. For each subgroup, the design stops accrual to doses having an unacceptably high death rate and at the end of the trial selects the optimal safe dose. A simulation study is presented to validate the design's safety, ability to identify optimal doses and robustness, and to compare it with a simplified design that ignores patient heterogeneity.
more »
« less
Deciphering Abnormal Platelet Subpopulations in COVID-19, Sepsis and Systemic Lupus Erythematosus through Machine Learning and Single-Cell Transcriptomics
This study focuses on understanding the transcriptional heterogeneity of activated platelets and its impact on diseases such as sepsis, COVID-19, and systemic lupus erythematosus (SLE). Recognizing the limited knowledge in this area, our research aims to dissect the complex transcriptional profiles of activated platelets to aid in developing targeted therapies for abnormal and pathogenic platelet subtypes. We analyzed single-cell transcriptional profiles from 47,977 platelets derived from 413 samples of patients with these diseases, utilizing Deep Neural Network (DNN) and eXtreme Gradient Boosting (XGB) to distinguish transcriptomic signatures predictive of fatal or survival outcomes. Our approach included source data annotations and platelet markers, along with SingleR and Seurat for comprehensive profiling. Additionally, we employed Uniform Manifold Approximation and Projection (UMAP) for effective dimensionality reduction and visualization, aiding in the identification of various platelet subtypes and their relation to disease severity and patient outcomes. Our results highlighted distinct platelet subpopulations that correlate with disease severity, revealing that changes in platelet transcription patterns can intensify endotheliopathy, increasing the risk of coagulation in fatal cases. Moreover, these changes may impact lymphocyte function, indicating a more extensive role for platelets in inflammatory and immune responses. This study identifies crucial biomarkers of platelet heterogeneity in serious health conditions, paving the way for innovative therapeutic approaches targeting platelet activation, which could improve patient outcomes in diseases characterized by altered platelet function.
more »
« less
- Award ID(s):
- 2215705
- PAR ID:
- 10535038
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- International Journal of Molecular Sciences
- Volume:
- 25
- Issue:
- 11
- ISSN:
- 1422-0067
- Page Range / eLocation ID:
- 5941
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Sickle cell disease (SCD) is the most prevalent inherited blood disorder in the world. But the clinical manifestations of the disease are highly variable. In particular, it is currently difficult to predict the adverse outcomes within patients with SCD, such as, vasculopathy, thrombosis, and stroke. Therefore, for most effective and timely interventions, a predictive analytic strategy is desirable. In this study, we evaluate the endothelial and prothrombotic characteristics of blood outgrowth endothelial cells (BOECs) generated from blood samples of SCD patients with known differences in clinical severity of the disease. We present a method to evaluate patient‐specific vaso‐occlusive risk by combining novel RNA‐seq and organ‐on‐chip approaches. Through differential gene expression (DGE) and pathway analysis we find that BOECs from SCD patients exhibit an activated state through cell adhesion molecule (CAM) and cytokine signaling pathways among many others. In agreement with clinical symptoms of patients, DGE analyses reveal that patient with severe SCD had a greater extent of endothelial activation compared to patient with milder symptoms. This difference is confirmed by performing qRT‐PCR of endothelial adhesion markers like E‐selectin, P‐selectin, tissue factor, and Von Willebrand factor. Finally, the differential regulation of the proinflammatory phenotype is confirmed through platelet adhesion readouts in our BOEC vessel‐chip. Taken together, we hypothesize that these easily blood‐derived endothelial cells evaluated through RNA‐seq and organ‐on‐chips may serve as a biotechnique to predict vaso‐occlusive episodes in SCD patients and will ultimately allow better therapeutic interventions.more » « less
-
Abstract Deep vein thrombosis (DVT) is a life‐threatening blood clotting condition that, if undetected, can cause deadly pulmonary embolisms. Critical to its clinical management is the ability to rapidly detect, monitor, and treat thrombosis. However, current diagnostic imaging modalities lack the resolution required to precisely localize vessel occlusions and enable clot monitoring in real time. Here, we rationally design fibrinogen‐mimicking fluoropeptide nanoemulsions, or nanopeptisomes (NPeps), that allow contrast‐enhanced ultrasound imaging of thrombi and synchronous inhibition of clot growth. The theranostic duality of NPeps is imparted via their intrinsic binding to integrins overexpressed on platelets activated during coagulation. The platelet‐bound nanoemulsions can be vaporized and oscillate in an applied acoustic field to enable contrast‐enhanced Doppler ultrasound detection of thrombi. Concurrently, nanoemulsions bound to platelets competitively inhibit secondary platelet–fibrinogen binding to disrupt further clot growth. Continued development of this synchronous theranostic platform may open new opportunities for image‐guided, non‐invasive, interventions for DVT and other vascular diseases.more » « less
-
Abstract The transcriptional plasticity of cancer cells promotes intercellular heterogeneity in response to anticancer drugs and facilitates the generation of subpopulation surviving cells. Characterizing single-cell transcriptional heterogeneity after drug treatments can provide mechanistic insights into drug efficacy. Here, we used single-cell RNA-seq to examine transcriptomic profiles of cancer cells treated with paclitaxel, celecoxib and the combination of the two drugs. By normalizing the expression of endogenous genes to spike-in molecules, we found that cellular mRNA abundance shows dynamic regulation after drug treatment. Using a random forest model, we identified gene signatures classifying single cells into three states: transcriptional repression, amplification and control-like. Treatment with paclitaxel or celecoxib alone generally repressed gene transcription across single cells. Interestingly, the drug combination resulted in transcriptional amplification and hyperactivation of mitochondrial oxidative phosphorylation pathway linking to enhanced cell killing efficiency. Finally, we identified a regulatory module enriched with metabolism and inflammation-related genes activated in a subpopulation of paclitaxel-treated cells, the expression of which predicted paclitaxel efficacy across cancer cell lines and in vivo patient samples. Our study highlights the dynamic global transcriptional activity driving single-cell heterogeneity during drug response and emphasizes the importance of adding spike-in molecules to study gene expression regulation using single-cell RNA-seq.more » « less
-
Abstract Platelets play a pivotal role in hemostasis and wound healing and conditional shape change is an important component of platelet functionality. In normal circumstances, platelets travel through the circulatory system in an inactive rounded state, which enables platelets to easily move to vessel walls for attachment. When an injury occurs, platelets are prompted by molecules, such as thrombin, to shift into a stellate shape and increase exposure of fibrin‐binding receptors. When active, platelets promote hemostasis and clot retraction, which enhances clot stability and promotes healing. However, in conditions where platelets are depleted or hyporeactive, these functions are diminished and lead to inhibited hemostasis and healing. To treat platelet depletion, our group developed platelet‐like particles (PLPs) which consist of highly deformable microgels coupled to fibrin binding motif. However, first generation PLPs do not exhibit wound‐triggered shape change like native platelets. Thus, the objective of these studies was to develop a PLP formulation that changes shape when prompted by thrombin. To create thrombin‐sensitive PLPs (TS‐PLPs), we incorporated a thrombin‐cleavable peptide into the microgel body and then evaluated PLP properties before and after exposure to thrombin including morphology, size, and in vitro clot retraction. Once thrombin‐prompted shape change ability was confirmed, the TS‐PLPs were tested in vivo for hemostatic ability and subsequent wound healing outcomes in a murine liver trauma model. We found that TS‐PLPs exhibit a wound‐triggered shape change, induce significant clot retraction following exposure to thrombin and promote hemostasis and healing in vivo after trauma.more » « less
An official website of the United States government

