skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sustainable Multifunctionality: Bio‐Inspired Printing of Nanocellulose Aerogel Acoustical Materials
Abstract The 3D freeze printing (3DFP) of nanocellulose aerogels are demonstrated with large‐scale aligned pore orientations as a sustainable alternative to current acoustical materials. In contrast with the unidirectional pore network orientations obtained from current 3DFP techniques, a bidirectional orientation is achieved by using an inhomogeneous printing substrate to alter the thermal gradient within the print volume. The microstructural morphology shows that bidirectional printing results in a 2D pore orientation, with comparatively thinner pore walls and larger pore widths. Acoustic measurements reveal that altering the pore network characteristics significantly affects the acoustical behavior of the printed CNC aerogels; the wider pores allow the bidirectional CNC aerogels to provide higher sound absorption performance at lower frequencies than the unidirectional samples. Notably, both 3D Freeze printed CNC aerogels provide substantially higher sound transmission loss performance as compared to current acoustical materials. The unidirectional pore structure results in CNC aerogels with higher stiffness and improved energy absorption performance, with both 3D freeze printed CNC aerogels outperforming other CNC aerogel materials in their stiffness‐to‐density ratios. The ability to simultaneously control their pore orientation and macrostructural geometry paves the way for printing complex shaped CNC aerogel structures for multifunctional noise control applications.  more » « less
Award ID(s):
2309995
PAR ID:
10535165
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
9
Issue:
16
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Assembling 2D materials such as MXenes into functional 3D aerogels using 3D printing technologies gains attention due to simplicity of fabrication, customized geometry and physical properties, and improved performance. Also, the establishment of straightforward electrode fabrication methods with the aim to hinder the restack and/or aggregation of electrode materials, which limits the performance of the electrode, is of great significant. In this study, unidirectional freeze casting and inkjet‐based 3D printing are combined to fabricate macroscopic porous aerogels with vertically aligned Ti3C2Txsheets. The fabrication method is developed to easily control the aerogel microstructure and alignment of the MXene sheets. The aerogels show excellent electromechanical performance so that they can withstand almost 50% compression before recovering to the original shape and maintain their electrical conductivities during continuous compression cycles. To enhance the electrochemical performance, an inkjet‐printed MXene current collector layer is added with horizontally aligned MXene sheets. This combines the superior electrical conductivity of the current collector layer with the improved ionic diffusion provided by the porous electrode. The cells fabricated with horizontal MXene sheets alignment as current collector with subsequent vertical MXene sheets alignment layers show the best electrochemical performance with thickness‐independent capacitive behavior. 
    more » « less
  2. null (Ed.)
    Graphene-based 3D macroscopic aerogels with their hierarchical porous structures and mechanical strength have been widely explored for removing contaminants from water. However, their large-scale manufacturing and application in various water treatment processes are limited by their scalability. In this study, we report a proof-of-concept direct ink writing (DIW) 3D printing technique and subsequent freeze-drying to prepare graphene-biopolymer aerogels for water treatment. To provide appropriate rheology for DIW printability, two bio-inspired polymers, polydopamine (PDA) and bovine serum albumin (BSA), were added to the graphene-based ink. The biopolymers also contributed to the contaminant removal capacity of the resultant graphene-polydopamine-bovine serum albumin (G-PDA-BSA) aerogel. The physicochemical properties of the aerogel were thoroughly characterized from the nano- to macroscale. The 3D printed aerogel exhibited excellent water contaminant removal performance for heavy metals (Cr( vi ), Pb( ii )), organic dyes (cationic methylene blue and anionic Evans blue), and organic solvents ( n -hexane, n -heptane, and toluene) in batch adsorption studies. The electrostatic interaction dominated the removal of heavy metals and dyes while the hydrophobic interaction dominated the removal of organic solvents from water. Moreover, the aerogel showed superb regeneration and reuse potential. The aerogel removed 100% organic solvents over 10 cycles of regeneration and reuse; additionally, the removal efficiencies for methylene blue decreased by 2–20% after the third cycle. The fit-for-design 3D printed aerogel was also effectively used as a bottle-cap flow-through filter for dye removal. The potential and vision of the 3D printing approach for graphene-based water treatment presented here can be extended to other functional nanomaterials, can enable shape-specific applications of fit-for-purpose adsorbents/reactors and point-of-use filters, and can materialize the large-scale manufacturing of nano-enabled water treatment devices and technologies. 
    more » « less
  3. Abstract Additive manufacturing (AM) of aerogels increases the achievable geometric complexity, and affords fabrication of hierarchically porous structures. In this work, a custom heated material extrusion (MEX) device prints aerogels of poly(phenylene sulfide) (PPS), an engineering thermoplastic, via in situ thermally induced phase separation (TIPS). First, pre‐prepared solid gel inks are dissolved at high temperatures in the heated extruder barrel to form a homogeneous polymer solution. Solutions are then extruded onto a room‐temperature substrate, where printed roads maintain their bead shape and rapidly solidify via TIPS, thus enabling layer‐wise MEX AM. Printed gels are converted to aerogels via postprocessing solvent exchange and freeze‐drying. This work explores the effect of ink composition on printed aerogel morphology and thermomechanical properties. Scanning electron microscopy micrographs reveal complex hierarchical microstructures that are compositionally dependent. Printed aerogels demonstrate tailorable porosities (50.0–74.8%) and densities (0.345–0.684 g cm−3), which align well with cast aerogel analogs. Differential scanning calorimetry thermograms indicate printed aerogels are highly crystalline (≈43%), suggesting that printing does not inhibit the solidification process occurring during TIPS (polymer crystallization). Uniaxial compression testing reveals that compositionally dependent microstructure governs aerogel mechanical behavior, with compressive moduli ranging from 33.0 to 106.5 MPa. 
    more » « less
  4. Abstract Aerogels are highly porous structures produced by replacing the liquid solvent of a gel with air without causing a collapse in the solid network. Unlike conventional fabrication methods, additive manufacturing (AM) has been applied to fabricate 3D aerogels with customized geometries specific to their applications, designed pore morphologies, multimaterial structures, etc. To date, three major AM technologies (extrusion, inkjet, and stereolithography) followed by a drying process have been proposed to additively manufacture 3D functional aerogels. 3D‐printed aerogels and porous scaffolds showed great promise for a variety of applications, including tissue engineering, electrochemical energy storage, controlled drug delivery, sensing, and soft robotics. In this review, the details of steps included in the AM of aerogels and porous scaffolds are discussed, and a general frame is provided for AM of those. Then, the different postprinting processes are addressed to achieve the porosity (after drying); and mechanical strength, functionality, or both (after postdrying thermal or chemical treatments) are provided. Furthermore, the applications of the 3D‐printed aerogels/porous scaffolds made from a variety of materials are also highlighted. The review is concluded with the current challenges and an outlook for the next generation of 3D‐printed aerogels and porous scaffolds. 
    more » « less
  5. null (Ed.)
    Abstract The conventional manufacturing processes of aerogel insulation material is largely relying on the supercritical drying, which suffers from issues of massive energy consumption, high-cost equipment, and prolonged processing time. With the consideration of large market demand of the aerogel insulation material in the next decade, a low-cost and scalable fabrication technique is highly desired. In this paper, a direct ink writing (DIW) method is used to three-dimensionally fabricate the silica aerogel insulation material, followed by room-temperature and ambient pressure drying. Compared to the supercritical drying and freeze-drying, the reported method significantly reduces the fabrication time and costs. The cost-effective DIW technique offers the capability to print complex hollow internal structures, coupled with the porous structure, is found to be beneficial to the thermal insulation property. The addition of fiber to the ink assures the durability of the fabricated product, without sacrificing the thermal insulation performance. The foam ink preparation methods and the printability are demonstrated in this paper, along with the printing of complex three-dimensional geometries. The thermal insulation performance of the printed objects is characterized, and the mechanical properties are also examined. The proposed approach is found to have 56% reduction in the processing time. The printed silica aerogels exhibit a low thermal conductivity of 0.053 W m−1 K−1. 
    more » « less