Abstract Two-dimensional (2D) van der Waals materials are shaping the landscape of next-generation devices, offering significant technological value thanks to their unique, tunable, and layer-dependent electronic and optoelectronic properties. Time-domain spectroscopic techniques at terahertz (THz) frequencies offer noninvasive, contact-free methods for characterizing the dynamics of carriers in 2D materials. They also pave the path toward the applications of 2D materials in detection, imaging, manufacturing, and communication within the increasingly important THz frequency range. In this paper, we overview the synthesis of 2D materials and the prominent THz spectroscopy techniques: THz time-domain spectroscopy (THz-TDS), optical pump THz probe (OPTP) technique, and optical pump--probe (OPP) THz spectroscopy. Through a coalescence of experimental findings, numerical simulation, and theoretical analysis, we present the current understanding of the rich ultrafast physics of technologically significant 2D materials: graphene, transition metal dichalcogenides, MXenes, perovskites, topological 2D materials, and 2D heterostructures. Finally, we offer a perspective on the role of THz characterization in guiding future research and in the quest for ideal 2D materials for new applications.
more »
« less
Probing coherent phonons in the advanced undergraduate laboratory
Ultrafast optical spectroscopy is an effective experimental technique for accessing electronic and atomic motions in materials at their fundamental timescales and studying their responses to external perturbations. Despite the important insights that ultrafast techniques can provide on the microscopic physics of solids, undergraduate students' exposure to this area of research is still limited. In this article, we describe an ultrafast optical pump-probe spectroscopy experiment for the advanced undergraduate instructional laboratory, in which students can measure coherently excited vibrations of the crystal lattice and connect their observations to the microscopic properties of the investigated materials. We designed a simple table-top apparatus based on a commercial Er-fiber oscillator emitting 50-fs pulses at 1560 nm and at 100 MHz repetition rate. We split the output into two beams, using one of them as an intense “pump” to coherently excite phonons in selected crystals, and the other as a weaker, delayed “probe” to measure the transient reflectivity changes induced by the pump. We characterize the ultrafast laser pulses via intensity autocorrelation measurements and detect coherent phonon oscillations in the reflectivity of Bi, Sb, and 1T-TaS2. We then discuss the oscillation amplitude, frequency, and damping in terms of microscopic properties of these systems.
more »
« less
- Award ID(s):
- 2132338
- PAR ID:
- 10535330
- Publisher / Repository:
- American Journal of Physics
- Date Published:
- Journal Name:
- American Journal of Physics
- Volume:
- 92
- Issue:
- 9
- ISSN:
- 0002-9505
- Page Range / eLocation ID:
- 693 to 702
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Excitation of coherent phonons has the potential to dramatically alter the electronic structure of Dirac and Weyl semimetals, enabling sub-picosecond control of their optical and electronic properties. The Dirac semimetal SrMnSb2 is a candidate for such control, with a coherent-phonon mode that is predicted to close and reopen a gap at the Dirac node. Here, through a series of ultrafast pump-probe experiments, we establish suitable samples and conditions for driving the coherent phonon to high amplitude and attempting to observe the gap’s closure. Films of SrMnSb2 grown by molecular-beam epitaxy are shown to have phononic properties matching those of bulk crystals. We find that the phonon can be strongly excited by pump pulses with wavelength near 1500 nm, which will excite a 30-nm film almost uniformly and will penetrate the arsenic capping layers that protect the films. We find that samples withstand pump pulses of fluence up to 20 mJ/cm2, and we demonstrate the potential for sequences of pulses to amplify the oscillation while suppressing other phonon modes. Armed with our new knowledge of the conditions for exciting the desired coherent phonon, future experiments will be well prepared to measure its motion and to observe phononic control of the Dirac-point gap.more » « less
-
We study the ultrafast time resolved response of 30 nm films of VO2on a TiO2substrate when 3.1 eV (400 nm wavelength) pump pulses were used to excite the insulator to metal transition (IMT). We found that the IMT threshold for these samples (≤30µJ/cm2) is more than 3 orders of magnitude lower than that generally reported for a more traditional 1.55 eV (800 nm wavelength) excitation. The samples also exhibited unusual reflectivity dynamics at near-threshold values of pump fluence where their fractional relative reflectivity ΔR/R initially increased before becoming negative after several hundreds of picoseconds, in stark contrast with uniformly negative ΔR/R observed for both higher 400 nm pump fluences and for 800 nm pump pulses. We explain the observed behavior by the interference of the reflected probe beam from the inhomogeneous layers formed inside the film by different phases of VO2and use a simple diffusion model of the VO2phase transition to support qualitatively this hypothesis. We also compare the characteristics of the VO2films grown on undoped TiO2and on doped TiO2:Nb substrates and observe more pronounced reflectivity variation during IMT and faster relaxation to the insulating state for the VO2/TiO2:Nb sample.more » « less
-
Abstract In the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light–matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge to highlight challenges and predict future trends.more » « less
-
Organic mixed ionic–electronic conductors (OMIECs) are a unique class of soft, conjugated polymeric materials. The simultaneous electronic and ionic transport of OMIECs enables a new type of device, namely, organic electrochemical transistors, among other emerging technologies. However, the dynamic nature—where charge transport, doping kinetics, and morphological changes occur concurrently—poses significant challenges in the characterization and understanding of OMIECs. Recent advances in in situ optical techniques, including ultraviolet–visible–near-infrared spectroscopy, Raman spectroscopy, and microscopy imaging, have provided valuable insights into the charge transport mechanisms and ionic doping dynamics spanning from the microscopic to the device scale. In this perspective, based on several archetypal OMIECs, we survey how spectroscopic signatures were used to reveal key physical processes in these materials. Looking forward, we propose that ultrafast spectroscopy and microscopy techniques—such as transient absorption spectroscopy, terahertz time-domain spectroscopy, pump–probe microscopy, and photothermal microscopy—hold great potential for uncovering more fundamental mechanisms of OMIEC operation, including quasiparticle dynamics, intrinsic electrical conductivity, and carrier mobility, which remain under-explored. Integrating optical characterization with electrochemical measurements will enable in operando studies on state-of-the-art devices, with results further refined by parallel advancements in theoretical modeling. Altogether, we envision in operando optical characterization with spatial, spectral, and temporal resolution across multiple scales as a powerful pathway to advance the understanding of OMIEC mechanisms and their structure–property relationships.more » « less
An official website of the United States government

