skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two Types of Transitions to Relatively Fast Spinup in Tropical Cyclone Simulations with Weak-to-Moderate Environmental Vertical Wind Shear
Abstract Tropical cyclone intensification is simulated with a cloud-resolving model under idealized conditions of constant SST and unidirectional environmental vertical wind shear maximized in the middle troposphere. The intensification process commonly involves a sharp transition to relatively fast spinup before the surface vortex achieves hurricane-force winds in the azimuthal mean. The vast majority of transitions fall into one of two categories labeled S and A. Type S transitions initiate quasi-symmetric modes of fast spinup. They occur in tropical cyclones after a major reduction of tilt and substantial azimuthal spreading of inner-core convection. The lead-up also entails gradual contractions of the radii of maximum wind speedrmand maximum precipitation. Type A transitions begin before an asymmetric tropical cyclone becomes vertically aligned. Instead of enabling the transition, alignment is an essential part of the initially asymmetric mode of fast spinup that follows. On average, type S transitions occur well after and type A transitions occur once the cyclonically rotating tilt vector becomes perpendicular to the shear vector. Prominent temporal peaks of lower-tropospheric CAPE and low-to-midlevel relative humidity averaged over the entire inner core of the low-level vortex characteristically coincide with type S but not with type A transitions. Prominent temporal peaks of precipitation and midlevel vertical mass flux in the meso-β-scale vicinity of the convergence center characteristically coincide with type A but not with type S transitions. Despite such differences, in both cases, the transitions tend not to begin before the distance between the low-level convergence and vortex centers divided byrmreduces to unity.  more » « less
Award ID(s):
2208205
PAR ID:
10535485
Author(s) / Creator(s):
 
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
81
Issue:
9
ISSN:
0022-4928
Format(s):
Medium: X Size: p. 1513-1541
Size(s):
p. 1513-1541
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tropical cyclones are commonly observed to have appreciable vertical misalignments prior to becoming full-strength hurricanes. The vertical misalignment (tilt) of a tropical cyclone is generally coupled to a pronounced asymmetry of inner-core convection, with the strongest convection tending to concentrate downtilt of the surface vortex center. Neither the mechanisms by which tilted tropical cyclones intensify nor the time scales over which such mechanisms operate are fully understood. The present study offers some insight into the asymmetric intensification process by examining the responses of tilted tropical cyclone–like vortices to downtilt diabatic forcing (heating) in a 3D nonhydrostatic numerical model. The magnitude of the heating is adjusted so as to vary the strength of the downtilt convection that it generates. A fairly consistent picture of intensification is found in various simulation groups that differ in their initial vortex configurations, environmental shear flows, and specific positionings of downtilt heating. The intensification mechanism generally depends on whether the low-level convergence σb produced in the vicinity of the downtilt heat source exceeds a critical value dependent on the local velocity of the low-level nondivergent background flow in a reference frame that drifts with the heat source. Supercritical σb causes fast spinup initiated by downtilt core replacement. Subcritical σb causes a slower intensification process. As measured herein, the supercritical intensification rate is approximately proportional to σb. The subcritical intensification rate has a more subtle scaling, and expectedly becomes negative when σb drops below a threshold for frictional spindown to dominate. The relevance of the foregoing results to real-world tropical cyclones is discussed. 
    more » « less
  2. Abstract A cloud-resolving model is used to examine the intensification of tilted tropical cyclones from depression to hurricane strength over relatively cool and warm oceans under idealized conditions where environmental vertical wind shear has become minimal. Variation of the SST does not substantially change the time-averaged relationship between tilt and the radial length scale of the inner core, or between tilt and the azimuthal distribution of precipitation during the hurricane formation period (HFP). By contrast, for systems having similar structural parameters, the HFP lengthens superlinearly in association with a decline of the precipitation rate as the SST decreases from 30° to 26°C. In many simulations, hurricane formation progresses from a phase of slow or neutral intensification to fast spinup. The transition to fast spinup occurs after the magnitudes of tilt and convective asymmetry drop below certain SST-dependent levels following an alignment process explained in an earlier paper. For reasons examined herein, the alignment coincides with enhancements of lower–middle-tropospheric relative humidity and lower-tropospheric CAPE inward of the radius of maximum surface wind speedrm. Such moist-thermodynamic modifications appear to facilitate initiation of the faster mode of intensification, which involves contraction ofrmand the characteristic radius of deep convection. The mean transitional values of the tilt magnitude and lower–middle-tropospheric relative humidity for SSTs of 28°–30°C are respectively higher and lower than their counterparts at 26°C. Greater magnitudes of the surface enthalpy flux and core deep-layer CAPE found at the higher SSTs plausibly compensate for less complete alignment and core humidification at the transition time. 
    more » « less
  3. This study explores the spatial and temporal changes in tropical cyclone (TC) thermodynamic and dynamic structures before, near, and during rapid intensification (RI) under different vertical wind shear conditions through four sets of convection-permitting ensemble simulations. A composite analysis of TC structural evolution is performed by matching the RI onset time of each member. Without background flow, the axisymmetric TC undergoes a gradual strengthening of the inner-core vorticity and warm core throughout the simulation. In the presence of moderate environmental shear (5–6 m s−1), both the location and magnitude of the asymmetries in boundary layer radial flow, relative humidity, and vertical motion evolve with the tilt vector throughout the simulation. A budget analysis indicates that tilting is crucial to maintaining the midlevel vortex while stretching and vertical advection are responsible for the upper-level vorticity generation before RI when strong asymmetries arise. Two warm anomalies are observed before the RI onset when the vortex column is tilted. When approaching the RI onset, these two warm anomalies gradually merge into one. Overall, the most symmetric vortex structure is found near the RI onset. Moderately sheared TCs experience an adjustment period from a highly asymmetric structure with updrafts concentrated at the down-tilt side before RI to a more axisymmetric structure during RI as the eyewall updrafts develop. This adjustment period near the RI onset, however, is found to be the least active period for deep convection. TC development under a smaller environmental shear (2.5 m s−1) condition displays an intermediate evolution between ensemble experiments with no background flow and with moderate shear (5–6 m s−1). 
    more » « less
  4. Abstract This study uses a recently developed airborne Doppler radar database to explore how vortex misalignment is related to tropical cyclone (TC) precipitation structure and intensity change. It is found that for relatively weak TCs, defined here as storms with a peak 10-m wind of 65 kt (1 kt = 0.51 m s−1) or less, the magnitude of vortex tilt is closely linked to the rate of subsequent TC intensity change, especially over the next 12–36 h. In strong TCs, defined as storms with a peak 10-m wind greater than 65 kt, vortex tilt magnitude is only weakly correlated with TC intensity change. Based on these findings, this study focuses on how vortex tilt is related to TC precipitation structure and intensity change in weak TCs. To illustrate how the TC precipitation structure is related to the magnitude of vortex misalignment, weak TCs are divided into two groups: small-tilt and large-tilt TCs. In large-tilt TCs, storms display a relatively large radius of maximum wind, the precipitation structure is asymmetric, and convection occurs more frequently near the midtropospheric TC center than the lower-tropospheric TC center. Alternatively, small-tilt TCs exhibit a greater areal coverage of precipitation inward of a relatively small radius of maximum wind. Greater rates of TC intensification, including rapid intensification, are shown to occur preferentially for TCs with greater vertical alignment and storms in relatively favorable environments. Significance StatementAccurately predicting tropical cyclone (TC) intensity change is challenging. This is particularly true for storms that undergo rapid intensity changes. Recent numerical modeling studies have suggested that vortex vertical alignment commonly precedes the onset of rapid intensification; however, this consensus is not unanimous. Until now, there has not been a systematic observational analysis of the relationship between vortex misalignment and TC intensity change. This study addresses this gap using a recently developed airborne radar database. We show that the degree of vortex misalignment is a useful predictor for TC intensity change, but primarily for weak storms. In these cases, more aligned TCs exhibit precipitation patterns that favor greater intensification rates. Future work should explore the causes of changes in vortex alignment. 
    more » « less
  5. null (Ed.)
    Abstract This study examines how midlevel dry air and vertical wind shear (VWS) can modulate tropical cyclone (TC) development via downdraft ventilation. A suite of experiments was conducted with different combinations of initial midlevel moisture and VWS. A strong, positive, linear relationship exists between the low-level vertical mass flux in the inner core and TC intensity. The linear increase in vertical mass flux with intensity is not due to an increased strength of upward motions but, instead, is due to an increased areal extent of strong upward motions ( w > 0.5 m s −1 ). This relationship suggests physical processes that could influence the vertical mass flux, such as downdraft ventilation, influence the intensity of a TC. The azimuthal asymmetry and strength of downdraft ventilation is associated with the vertical tilt of the vortex: downdraft ventilation is located cyclonically downstream from the vertical tilt direction and its strength is associated with the magnitude of the vertical tilt. Importantly, equivalent potential temperature of parcels associated with downdraft ventilation trajectories quickly recovers via surface fluxes in the subcloud layer, but the areal extent of strong upward motions is reduced. Altogether, the modulating effects of downdraft ventilation on TC development are the downward transport of low–equivalent potential temperature, negative-buoyancy air left of shear and into the upshear semicircle, as well as low-level radial outflow upshear, which aid in reducing the areal extent of strong upward motions, thereby reducing the vertical mass flux in the inner core, and stunting TC development. 
    more » « less